Le but de cet article est de montrer qu’un ensemble quelconque de quatre racines des polynômes quintiques exhibés par . Darmon forme sous certaines conditions un système fondamental d’unités de la fermeture normale du corps où .
The purpose of this paper is to show that any set of four roots of the quintic polynomials exhibited by H. Darmon forms under certain conditions a fundamental system of units for the corresponding dihedral fields.
@article{JTNB_2001__13_2_469_0,
author = {Kihel, Omar},
title = {Groupe des unit\'es pour des extensions di\'edrales complexes de degr\'e $10$ sur $Q$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {469--482},
year = {2001},
publisher = {Universit\'e Bordeaux I},
volume = {13},
number = {2},
mrnumber = {1879669},
zbl = {1012.11096},
language = {fr},
url = {https://www.numdam.org/item/JTNB_2001__13_2_469_0/}
}
TY - JOUR AU - Kihel, Omar TI - Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$ JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 469 EP - 482 VL - 13 IS - 2 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_2001__13_2_469_0/ LA - fr ID - JTNB_2001__13_2_469_0 ER -
%0 Journal Article %A Kihel, Omar %T Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$ %J Journal de théorie des nombres de Bordeaux %D 2001 %P 469-482 %V 13 %N 2 %I Université Bordeaux I %U https://www.numdam.org/item/JTNB_2001__13_2_469_0/ %G fr %F JTNB_2001__13_2_469_0
Kihel, Omar. Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 469-482. https://www.numdam.org/item/JTNB_2001__13_2_469_0/
[1] , Algebraic number fields with two independent units. Proc. London Math. Soc 34 (1932), 360-378. | Zbl | JFM
[2] , Sur les unités d'un corps algébrique de degré 3 ou 4. Mat. Sbornik N. S. 40 (1956) (en russe).
[3] , On the group of units of an absolutely cyclic number field of prime degree. J. Math. Soc. Japan 21 (1969), 357-358. | Zbl | MR
[4] , Lower bounds for regulators. Lecture Notes in Math. 1068, 63-73, Springer, Berlin, 1984. | Zbl | MR
[5] , Une famille de polynômes liée à X0(5). Notes non publiées, 1993.
[6] , Note on a polynomial of Emma Lehmer. Math. Comp. 56 (1991), 795-800. | Zbl | MR
[7] , Galois Theory. Graduate Texts in Mathematics 101, Springer-Verlag, New York, 1984. | Zbl | MR
[8] , Special units in real cyclic sextic fields. Math. Comp. 48 (1987), 179-182. | Zbl | MR
[9] , Fundamental units of certain algebraic number fields. Abh. Math. Semi.Univ. Hamburg 39 (1973), 245-250. | Zbl | MR
[10] , A note on the group of units of an algebraic number field. J. Math. Pures Appl. 35 (1956), 189-192. | Zbl | MR
[11] , Unités d'une famille de corps liés à la courbe X1(25). Ann. Inst. Fourier 40 (1990), 237-254. | Zbl | MR | Numdam | EuDML
[12] , Connections between Gaussian periods and cyclic units. Math. Comp. 50 (1988), 535-541. | Zbl | MR
[13] , The determination of units in real cyclic sextic fields. Lecture Notes in Math. 797, Springer, Berlin, 1980. | Zbl | MR
[14] , The simplest cubic fields. Math. Comp. 28 (1974), 1137-1152. | Zbl | MR
[15] , , Quintic polynomials and real cyclotomic fields with large class number. Math. Comp. 50 (1988), 541-555. | Zbl | MR
[16] , Lôsbare Gleichungen axn - byn = c und Grundeinheiten fûr einige algebraische Zahikôrper vom Grade n = 3,4,6. J. Reine Angew. Math. 290 (1977), 24-62. | Zbl | MR | EuDML
[17] , Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1982. | Zbl | MR
[18] , First Course in algebra and number theory. Academic Press, New York-London, 1971. | Zbl | MR
[19] , The fundamental units in absolutely cyclic number fields of degree five. Sci. Sinica Ser. A 27 (1984), 27-40. | Zbl | MR





