Hardouin, Cécile
Influence d'une contamination initiale sur une dynamique spatiale non itérative
Journal de la société française de statistique, Tome 149 (2008) no. 4 , p. 107-129
URL stable : http://www.numdam.org/item?id=JSFS_2008__149_4_107_0

Mots clés: adoption de standards, dynamique spatiale non itérative, effet de dumping, systèmes coopératifs
n consommateurs répartis sur un réseau spatial S choisissent tour à tour entre deux standards A et B suivant des règles locales. Un unique balayage du réseau est effectué, c’est-à-dire que la dynamique est non itérative. Dans ce cas, et contrairement aux dynamiques itératives ergodiques, les caractéristiques de la configuration spatiale finale du réseau dépendent de la configuration initiale et ne peuvent pas être évaluées mathématiquement. Nous en faisons l’étude empirique par simulation, pour un certain nombre de règles d’adoption bien spécifiées. L’objectif central de ce travail est de voir quel est l’effet d’une contamination initiale, ou effet de dumping, sur le standard A au taux τ sur la répartition spatiale finale. On évaluera en particulier de manière empirique la fréquence finale du standard A, la corrélation spatiale, ainsi que des mesures d’aggrégation et de connexité. Pour chacun de ces indicateurs, on constate que l’effet du dumping est d’autant plus important que le taux de contamination initial est faible.
This paper explores the diffusion of technological innovations, under a simple and real framework: n agents spread on a spatial network S, choosing between two competitive technologies A and B. The choice is unique, made individually, one by one, according to a sequential assignment rule. We consider various rules, but depending on the local context. In the case of iterative dynamics, it is possible to characterize the probability distribution of limits configurations. We consider here a non iterative dynamics with a unique scan of S. Therefore, we don’t know the final configuration, since there is no asymptotics in space nor in time. We propose to study empirically this situation, in the case of an initial occurence of standards A at a given rate τ. In particular, we will study the behaviour of the final frequency of standards A, spatial correlation, and we give some connectedness and clustering indexes. For each index, we see that if the initial rate of contamination τ is lower, the dumping effect becomes more important.

Bibliographie

[1] Arthur W.B. (1989), Competing technologies, increasing returns, and lock-in by historical events, The economic journal, 99, 116-131.

[2] Banerjee A.V. (1992), A simple model of herd behaviour, The quaterly journal of economics, Vol. CVII.

[3] Besag J. (1974), Spatial interaction and the statistical analysis of lattice systems, JRSS B, 36, 192-236. MR 373208 | Zbl 0327.60067

[4] J. Besag and Moran P.A.P. (1975), On the estimation and testing of spatial interaction for Gaussian lattice processes, Biometrika, 62, 3, 555-562. MR 391451 | Zbl 0388.62082

[5] Bikhchandani S., Hirshleifer D., Welch I. (1992), A theory of fads, fashion, custom, and cultural change as informational cascades, Journal of political economy, Vol. 100 no 5, 992-1026.

[6] Bikhchandani S., Hirshleifer D., Welch I. (1998), Learning from the behaviour of others : conformity, fads, and informational cascades, Journal of economic perpectives, Vol 12 no 3, 151-170.

[7] Chopard B., Dupuis A., Masselot A., Luthi P. (2002), Cellular automata and lattice Boltzmann techniques : an approach to model and simulate complex systems, Adv. Complex systems, 5 Vol 2-3, 103-246. MR 1945669 | Zbl 1090.82030

[8] Cliff A.D. and Ord J.K. (1981), Spatial autocorrelation (2nd ed), Pion, Londres. MR 632256

[9] Cox J.T. (1989), Coalescing random walks and voter model consensus times on the torus 𝐙 d , Ann. Proba., Vol. 17, no 4, 1333-1366. MR 1048930 | Zbl 0685.60100

[10] David P.A., Foray D. (1993), Percolation structures, Markov random fields and the economics of EDI standard diffusion, in Pogorel (ed.), Global telecommunications strategies and technological changes, North-Holland.

[11] Galam S. (1997), Rational group decision making : a random field ising model at T=0, Physica A, 238, 66-80.

[12] Galam S., Chopard B., Masselot A., Droz M. (1998), Competing species dynamics : qualitative advantage versus geography, Eur. Phys. J., B4, 529-531.

[13] Geman D. et Geman S. (1984), Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE-PAMI, 6, 721-741. Zbl 0573.62030

[14] Geman D. (1990), Random fields and inverse problem in imaging, École de Saint Flour, Lect. Notes in Maths. no 1427, Springer. MR 1100283 | Zbl 0718.60119

[15] Guyon X. (1995), Random fields on a network : modeling, statistics and applications, Springer. MR 1344683 | Zbl 0839.60003

[16] Guyon X. et Hardouin C. (2001), Standards adoption dynamics and tests for non spatial coordination, Springer, Lecture Notes in Statistics 159, 39-56. MR 1847742 | Zbl 1021.62080

[17] Malarz K., Antosiewicz W., Kapinska J., Kulakowski K., Tadic B. (2007), Avalanches in complex spin networks, Physica A, 373C, 785-795.

[18] Manka A., Malarz K., Kulakowski K. (2007), Clusterization, frustration, and collectivity in random networks, International Journal of Modern Physics C, Vol. 18 no 11, 1765-1773. Zbl pre05283033

[19] Marengo L. (1998), Knowledge distribution and coordination in organisations, in N. Lazaric and E. Lorenz (Eds), Trust and Economic Learning, Cheltenham, Edward Elgar, 227-246.

[20] Orléan A. (1998), Informational influences and the ambivalence of imitation, in Lesourne and Orléan (Eds.), Advances in self organization and evolutionary economics, Economica, 39-56.

[21] Lesourne J., Orléan A. (Eds) (1998), Advances in self organization and evolutionary economics, Economica, Introduction 1-7.

[22] Orléan A. (1998), The evolution of imitation, in The economics of networks : interaction and behaviours, Cohendet P., Llerena P., Stahn H. et G. Umbhauer (Eds.), Springer-Verlag, 325-339. Zbl 0946.91034

[23] Phan D., Beugnard A. (2001), Moduleco, a multi-agent modular framework, for the simulation of network effects and population dynamics in social sciences, market & organisations, 8e Rencontre Internationale ACSEG (Approches Connexionnistes en Sciences Économiques et de Gestion), Université de Rennes, IGR 22-23 novembre.

[24] Paulré B. (1997), Évolutionisme contemporain et auto-organisation, Économie appliquée Tome L no 3, 121-150.

[25] Steyer A., Zimmermann J.-B. (1996), Externalités de réseau et adoption d'un standard dans une structure résiliaire, Revue d'économie industrielle, no 76, 67-90.

[26] Thébaud G., Peyrard N., Dallot S., Calonnec A., Labonne G. (2005), Investigating disease spread between two assessment dates with permutation tests on a lattice, Analytical and theoretical plant pathology, vol 95 no 12, 1453-1461.

[27] Weisbuch G., Staufer D. (2000), Hits and flops dynamics. Economic dynamics from the physics point of view, Physica A. no 3-4, 563-576. MR 1802419