For a class of random dynamical systems which describe dissipative nonlinear PDEs perturbed by a bounded random kick-force, I propose a “direct proof” of the uniqueness of the stationary measure and exponential convergence of solutions to this measure, by showing that the transfer-operator, acting in the space of probability measures given the Kantorovich metric, defines a contraction of this space.
@incollection{JEDP_2001____A9_0,
author = {Kuksin, Sergei B.},
title = {On exponential convergence to a stationary measure for a class of random dynamical systems},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {9},
pages = {1--10},
year = {2001},
publisher = {Universit\'e de Nantes},
doi = {10.5802/jedp.593},
mrnumber = {1843410},
zbl = {01808685},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jedp.593/}
}
TY - JOUR AU - Kuksin, Sergei B. TI - On exponential convergence to a stationary measure for a class of random dynamical systems JO - Journées équations aux dérivées partielles PY - 2001 SP - 1 EP - 10 PB - Université de Nantes UR - https://www.numdam.org/articles/10.5802/jedp.593/ DO - 10.5802/jedp.593 LA - en ID - JEDP_2001____A9_0 ER -
%0 Journal Article %A Kuksin, Sergei B. %T On exponential convergence to a stationary measure for a class of random dynamical systems %J Journées équations aux dérivées partielles %D 2001 %P 1-10 %I Université de Nantes %U https://www.numdam.org/articles/10.5802/jedp.593/ %R 10.5802/jedp.593 %G en %F JEDP_2001____A9_0
Kuksin, Sergei B. On exponential convergence to a stationary measure for a class of random dynamical systems. Journées équations aux dérivées partielles (2001), article no. 9, 10 p.. doi: 10.5802/jedp.593
[Du] Real analysis and probability, Wadsworth&Brooks/Cole, 1989. | MR | Zbl
[KA] , Functional analysis (in sbauRussian). Moscow, Nauka, 1977. | MR | Zbl
[KS1] , , Stochastic dissipative PDEs and Gibbs measure, Commun. Math. Phys. 213 (2000), 291-330. | MR | Zbl
[KS2] , A coupling approach to randomly forced nonlinear PDEs 1, to appear in Commun. Math. Phys. | MR | Zbl
[KPS] , , , A coupling approach to randomly forced nonlinear PDEs. 2, preprint (April, 2001). | MR
[Lin] , Lectures on the Coupling Methods, New York, John Willey & Sons, 1992. | MR | Zbl
Cité par Sources :





