@incollection{JEDP_1995____A12_0,
author = {Morita, Yoshihisa},
title = {Stable solutions and their spatial structure of the {Ginzburg-Landau} equation},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {12},
pages = {1--5},
year = {1995},
publisher = {Ecole polytechnique},
doi = {10.5802/jedp.484},
mrnumber = {96j:35237},
zbl = {0877.35049},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jedp.484/}
}
TY - JOUR AU - Morita, Yoshihisa TI - Stable solutions and their spatial structure of the Ginzburg-Landau equation JO - Journées équations aux dérivées partielles PY - 1995 SP - 1 EP - 5 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jedp.484/ DO - 10.5802/jedp.484 LA - en ID - JEDP_1995____A12_0 ER -
%0 Journal Article %A Morita, Yoshihisa %T Stable solutions and their spatial structure of the Ginzburg-Landau equation %J Journées équations aux dérivées partielles %D 1995 %P 1-5 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jedp.484/ %R 10.5802/jedp.484 %G en %F JEDP_1995____A12_0
Morita, Yoshihisa. Stable solutions and their spatial structure of the Ginzburg-Landau equation. Journées équations aux dérivées partielles (1995), article no. 12, 5 p.. doi: 10.5802/jedp.484
[1] , and , Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR | Zbl
[2] and , Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eqns., vol.27, 1978, pp.266-273. | MR | Zbl
[3] , On domain variation for some non-isolated sets of solutions and a problem of Jimbo and Morita, in preparation.
[4] and , On the theory of superconductivity, Zh. eksper. teor. Fiz. 20 (1950) 1064-1082.
[5] , Asymptotic Behaviour of Dissipative Systems, Math. Surveys and Monographs 25 A.M.S., 1988. | MR | Zbl
[6] , Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York 1981. | MR | Zbl
[7] and , Stability of Non-constant Steady State Solutions to a Ginzburg-Landau Equation in Higher Space Dimensions, Nonlinear Analysis: T.M.A., Vol.22, 1994, pp. 753-770. | MR | Zbl
[8] and , Ginzburg-Landau equation and stable solutions in a rotational domain, to appear in SIAM J. of Math. Anal. | Zbl
[9] and , Stable Solutions with Zeros to the Ginzburg-Landau Equation with Neumann Boundary Condition, in preparation. | Zbl
[10] , and , Ginzburg-Landau equation and stable steady state solutions in a non-trivial domain, to appear in Comm. in P.D.E. | Zbl
[11] , Asymptotic behavior and stability of solutions of semilinear diffusion equations, Pub. of RIMS Kyoto Univ., vol. 15, 1979, pp. 401-454. | MR | Zbl
Cité par Sources :





