This paper is a contribution to the general tiling problem for the hyperbolic plane. It is an intermediary result between the result obtained by R. Robinson [Invent. Math. 44 (1978) 259-264] and the conjecture that the problem is undecidable.
Keywords: tilings, tiling problem, hyperbolic plane, origin-constrained problem
@article{ITA_2008__42_1_21_0,
author = {Margenstern, Maurice},
title = {About the domino problem in the hyperbolic plane from an algorithmic point of view},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {21--36},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {1},
doi = {10.1051/ita:2007045},
mrnumber = {2382542},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2007045/}
}
TY - JOUR AU - Margenstern, Maurice TI - About the domino problem in the hyperbolic plane from an algorithmic point of view JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 21 EP - 36 VL - 42 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007045/ DO - 10.1051/ita:2007045 LA - en ID - ITA_2008__42_1_21_0 ER -
%0 Journal Article %A Margenstern, Maurice %T About the domino problem in the hyperbolic plane from an algorithmic point of view %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 21-36 %V 42 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2007045/ %R 10.1051/ita:2007045 %G en %F ITA_2008__42_1_21_0
Margenstern, Maurice. About the domino problem in the hyperbolic plane from an algorithmic point of view. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 21-36. doi: 10.1051/ita:2007045
[1] , The undecidability of the domino problem. Mem. Amer. Math. Soc. 66 (1966) 1-72. | Zbl | MR
[2] , A strongly aperiodic set of tiles in the hyperbolic plane. Invent. Math. 159 (2005) 119-132. | Zbl | MR
[3] , New tools for cellular automata of the hyperbolic plane. J. Univ. Comput. Sci. 6 (2000) 1226-1252. | Zbl | MR
[4] , About the domino problem in the hyperbolic plane from an algorithmic point of view2006), available at: http://www.lita.sciences.univ-metz.fr/~margens/hyp_dominoes.ps.gzip
[5] , Fibonacci numbers and words in tilings of the hyperbolic plane. TUCS Gen. Publ. 43 (2007) 36-41.
[6] , About the domino problem in the hyperbolic plane, a new solution, arXiv:cs.CG/0701096 (2007). | MR
[7] , The domino problem of the hyperbolic plane is undecidable, arXiv:0706.4161 (2007). | Zbl | MR
[8] , Cellular Automata in Hyperbolic Spaces, Volume 1, Theory. OCP, Philadelphia (2007). | Zbl
[9] , Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12 (1971) 177-209. | Zbl | MR
[10] , Undecidable tiling problems in the hyperbolic plane. Invent. Math. 44 (1978) 259-264. | Zbl | MR
[11] , Proving theorems by pattern recognition. Bell System Tech. J. 40 (1961) 1-41.
Cité par Sources :






