The MATRIX PACKING DOWN problem asks to find a row permutation of a given -matrix in such a way that the total sum of the first non-zero column indexes is maximized. We study the computational complexity of this problem. We prove that the MATRIX PACKING DOWN problem is NP-complete even when restricted to zero trace symmetric -matrices or to -matrices with at most two ’s per column. Also, as intermediate results, we introduce several new simple graph layout problems which are proved to be NP-complete.
@article{ITA_2006__40_4_519_0,
author = {Vialette, St\'ephane},
title = {Packing of (0, 1)-matrices},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {519--535},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {4},
doi = {10.1051/ita:2006037},
mrnumber = {2277046},
zbl = {1110.68049},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2006037/}
}
TY - JOUR AU - Vialette, Stéphane TI - Packing of (0, 1)-matrices JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 519 EP - 535 VL - 40 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2006037/ DO - 10.1051/ita:2006037 LA - en ID - ITA_2006__40_4_519_0 ER -
%0 Journal Article %A Vialette, Stéphane %T Packing of (0, 1)-matrices %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 519-535 %V 40 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2006037/ %R 10.1051/ita:2006037 %G en %F ITA_2006__40_4_519_0
Vialette, Stéphane. Packing of (0, 1)-matrices. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 4, pp. 519-535. doi: 10.1051/ita:2006037
[1] , Perfect graphs, in Studies in graph theory, edited by D.R. Fulkerson. Washington D.C., Math. Assoc. Amer. (1975) 1-22. | Zbl
[2] , and, Graph Classes: A Survey, SIAM, Philadelphia, SIAM Monogr. Discrete Math. Appl. (1999). | Zbl | MR
[3] and, Combinatorial Matrix Theory. Cambridge University Press, New York (1991). | Zbl | MR
[4] ,,, and, On the complexity and approximation of syntenic distance. Discrete Appl. Math. 88 (1998) 59-82. | Zbl
[5] ,, and, Approximating layout problems on random geometric graphs. J. Algorithms 39 (2001) 78-116. | Zbl
[6] , and, A survey on graph layout problems. ACM Comput. Surveys 34 (2002) 313-356.
[7] , Graph theory. Number 173 in Graduate texts in Mathematics. Springer-Verlag, second edition (2000). | Zbl | MR
[8] and, NP-completeness of several arrangement problems. Technical Report TR-43, Dept. of Computer Science, Haifa (1975).
[9] and, Computers and Intractability: a guide to the theory of NP-completeness. W.H. Freeman, San Franciso (1979). | Zbl | MR
[10] , and, Some simplified NP-complete graph problems. Theor. Comput. Sci. 1 (1976) 237-267. | Zbl
[11] , The intersection graphs of subtrees are exactly the chordal graphs. J. Combin. Theory Ser. B 16 (1974) 47-56. | Zbl
[12] , Some NP-complete problems on graphs, in Proc. of the 11th Conference on Information Sciences and Systems, John Hopkins University, Baltimore (1977) 91-95.
[13] ,, and, Four strikes against physical mapping of dna. J. Comput. Biology 2 (1995) 139-152.
[14] , Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980). | Zbl | MR
[15] , Minimizing the profile of a symmetric matrix. SIAM J. Scientific Comput. 23 (2002) 1799-1816. | Zbl
[16] and, Split graphs. Congr. Numer. 19 (1997) 311-315. | Zbl
[17] and, Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36 (1992) 153-168. | Zbl
[18] , and, On sparse matrix reordering for parallel factorization, in International Conference on Supercomputing (1994) 431-438.
[19] and, Topics in intersection graph theory. SIAM Monogr. Discrete Math. Appl. (1999). | Zbl | MR
[20] , The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebraic Discrete Methods 7 (1986) 505-512. | Zbl
[21] and, Min Cut is NP-complete for edge weighted trees. Theor. Comput. Sci. 58 (1988) 209-229. | Zbl
[22] , The NP-completness of the bandwidth minimization problem. Computing 16 (1976) 263-270. | Zbl
[23] , A minimum linear arrangement algorithm for undirected trees. SIAM J. Comput. 30 (1979) 1173-1789. | Zbl
[24] , On crossing numbers, and some unsolved problems, in Combinatorics, Geometry and Probability: A Tribute to Paul Erdös, edited by B. Bollobás and A. Thomason, Cambridge University Press (1997) 557-562. | Zbl
Cité par Sources :






