It is known that the class of factorizing codes, i.e., codes satisfying the factorization conjecture formulated by Schützenberger, is closed under two operations: the classical composition of codes and substitution of codes. A natural question which arises is whether a finite set of operations exists such that each factorizing code can be obtained by using the operations in and starting with prefix or suffix codes. is named here a complete set of operations (for factorizing codes). We show that composition and substitution are not enough in order to obtain a complete set. Indeed, we exhibit a factorizing code over a two-letter alphabet , precisely a code, which cannot be obtained by decomposition or substitution.
Keywords: variable length codes, formal languages, factorizations of cyclic groups
@article{ITA_2006__40_1_29_0,
author = {Felice, Clelia De},
title = {On a complete set of operations for factorizing codes},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {29--52},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {1},
doi = {10.1051/ita:2005040},
mrnumber = {2197282},
zbl = {1091.94017},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2005040/}
}
TY - JOUR AU - Felice, Clelia De TI - On a complete set of operations for factorizing codes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 29 EP - 52 VL - 40 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2005040/ DO - 10.1051/ita:2005040 LA - en ID - ITA_2006__40_1_29_0 ER -
%0 Journal Article %A Felice, Clelia De %T On a complete set of operations for factorizing codes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 29-52 %V 40 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2005040/ %R 10.1051/ita:2005040 %G en %F ITA_2006__40_1_29_0
Felice, Clelia De. On a complete set of operations for factorizing codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 1, pp. 29-52. doi: 10.1051/ita:2005040
[1] , A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes, in Proc. DLT'99, G. Rozenberg, W. Thomas Eds. World Scientific (2000) 141-152. | Zbl
[2] , A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes. Discrete Appl. Math. 126 (2003) 129-165. | Zbl
[3] and, Theory of Codes. Academic Press, New York (1985). | Zbl | MR
[4] and, Trends in the Theory of Codes. Bull. EATCS 29 (1986) 84-95. | Zbl
[5] and, Rational Series and Their Languages. EATCS Monogr. Theoret. Comput. Sci. 12 (1988). | Zbl | MR
[6] , Une famille remarquable de codes indécomposables, in Proc. Icalp 78. Lect. Notes Comput. Sci. 62 (1978) 105-112. | Zbl
[7] , Sur les codes factorisants1980) 1-8.
[8] and, Synchronization and decomposability for a family of codes. Intern. J. Algebra Comput. 4 (1992) 367-393. | Zbl
[9] and, Synchronization and decomposability for a family of codes: Part 2. Discrete Math. 140 (1995) 47-77. | Zbl
[10] and, Variable-Length Maximal Codes, in Proc. Icalp 96. Lect. Notes Comput. Sci. 1099 (1996) 24-47. | Zbl
[11] , and, Indecomposable prefix codes and prime trees, in Proc. DLT 97 edited by S. Bozapadilis-Aristotel (1997).
[12] , Sur un algorithme donnant les codes bipréfixes finis. Math. Syst. Theory 6 (1972) 221-225. | Zbl
[13] , Sur l'application du théorème de Suschkevitch à l'étude des codes rationnels complets, in Proc. Icalp 74. Lect. Notes Comput. Sci. (1974) 342-350. | Zbl
[14] , Construction of a family of finite maximal codes. Theoret. Comput. Sci. 63 (1989) 157-184. | Zbl
[15] , A partial result about the factorization conjecture for finite variable-length codes. Discrete Math. 122 (1993) 137-152. | Zbl
[16] , An application of Hajós factorizations to variable-length codes. Theoret. Comput. Sci. 164 (1996) 223-252. | Zbl
[17] , Factorizing Codes and Schützenberger Conjectures, in Proc. MFCS 2000. Lect. Notes Comput. Sci. 1893 (2000) 295-303. | Zbl
[18] , On some Schützenberger Conjectures. Inform. Comp. 168 (2001) 144-155. | Zbl
[19] , An enhanced property of factorizing codes. Theor. Comput. Sci. 340 (2005) 240-256. | Zbl
[20] and, Some results on finite maximal codes. RAIRO-Inform. Theor. Appl. 19 (1985) 383-403. | Zbl | Numdam
[21] and, Solution partielle de la conjecture de factorisation des codes. C.R. Acad. Sci. Paris 302 (1986) 169-170. | Zbl
[22] , A three-word code which is not prefix-suffix composed. Theor. Comput. Sci. 163 (1996) 145-160. | Zbl
[23] , Abelian groups. Pergamon Press, New York (1960). | Zbl | MR
[24] , Sur la factorisation des groupes abéliens. Casopis Pest. Mat. Fys. 74 (1950) 157-162. | Zbl
[25] and, Sur une propriété des polynômes de la division du cercle. C.R. Acad. Sci. Paris 240 (1937) 397-399. | JFM
[26] , A note on codes having no finite completions. Inform. Proc. Lett. 55 (1995) 185-188. | Zbl
[27] , Hajós factorizations and completion of codes. Theor. Comput. Sci. 182 (1997) 245-256. | Zbl
[28] and, Locally complete sets and finite decomposable codes. Theor. Comput. Sci. 273 (2002) 185-196. | Zbl
[29] , Éléments de la théorie générale des codes, in Automata Theory, edited by E. Caianiello. Academic Press, New York (1966) 278-294. | Zbl
[30] , Codes asynchrones. Bull. Soc. Math. France 105 (1977) 385-404. | Zbl | Numdam
[31] , Polynôme d'un code1980) 169-176.
[32] and, Un problème élémentaire de la théorie de l'information, Théorie de l'Information, Colloques Internat. CNRS, Cachan 276 (1977) 249-260. | Zbl
[33] , On codes having no finite completions. Discrete Math. 17 (1977) 309-316. | Zbl
[34] , Codes and local constraints. Theor. Comput. Sci. 72 (1990) 55-64. | Zbl
[35] , and, Completing codes. RAIRO-Inf. Theor. Appl. 23 (1989) 135-147. | Zbl | Numdam
[36] and, On the lattice of prefix codes. Theor. Comput. Sci. 289 (2002) 755-782. | Zbl
[37] , Sulla fattorizzazione dei codici. Ricerche di Mat. XXXII (1983) 115-130. | Zbl
[38] , Non commutative factorization of variable-length codes. J. Pure Appl. Algebra 36 (1985) 167-186. | Zbl
[39] , On the factorisation of finite abelian groups. Acta Math. Acad. Sci. Hungaricae 8 (1957) 65-86. | Zbl
[40] , Une théorie algébrique du codage, Séminaire Dubreil-Pisot 1955-56, exposé No. 15 (1955), 24 p. | Numdam
[41] , Construction de codes indécomposables. RAIRO-Inf. Theor. Appl. 19 (1985) 165-178. | Zbl | Numdam
[42] and, Two classes of factorizing codes - -codes and -codes, in Words, Languages and Combinatorics II, edited by M. Ito and H. Jürgensen. World Scientific (1994) 477-483. | Zbl
Cité par Sources :





