We show that semigroups representable by triangular matrices over a fixed finite field form a decidable pseudovariety and provide a finite pseudoidentity basis for it.
@article{ITA_2005__39_1_31_0,
author = {Almeida, Jorge and Margolis, Stuart W. and Volkov, Mikhail V.},
title = {The pseudovariety of semigroups of triangular matrices over a finite field},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {31--48},
year = {2005},
publisher = {EDP Sciences},
volume = {39},
number = {1},
doi = {10.1051/ita:2005002},
mrnumber = {2132577},
zbl = {1086.20029},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2005002/}
}
TY - JOUR AU - Almeida, Jorge AU - Margolis, Stuart W. AU - Volkov, Mikhail V. TI - The pseudovariety of semigroups of triangular matrices over a finite field JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 31 EP - 48 VL - 39 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2005002/ DO - 10.1051/ita:2005002 LA - en ID - ITA_2005__39_1_31_0 ER -
%0 Journal Article %A Almeida, Jorge %A Margolis, Stuart W. %A Volkov, Mikhail V. %T The pseudovariety of semigroups of triangular matrices over a finite field %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 31-48 %V 39 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2005002/ %R 10.1051/ita:2005002 %G en %F ITA_2005__39_1_31_0
Almeida, Jorge; Margolis, Stuart W.; Volkov, Mikhail V. The pseudovariety of semigroups of triangular matrices over a finite field. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 31-48. doi: 10.1051/ita:2005002
[1] , Implicit operations on finite -trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | Zbl
[2] , Finite Semigroups and Universal Algebra. World Scientific (1995). | Zbl | MR
[3] and, Globals of pseudovarieties of commutative semigroups: the finite basis problem, decidability, and gaps. Proc. Edinburgh Math. Soc. 44 (2001) 27-47. | Zbl
[4] and, Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety. J. Algebra Appl. 2 (2003) 137-163. | Zbl
[5] and, The Algebraic Theory of Semigroups. Amer. Math. Soc. Vol. I (1961); Vol. II (1967). | Zbl
[6] and, Dot-depth of star-free events. J. Comp. Syst. Sci. 5 (1971) 1-15. | Zbl
[7] , Automata, Languages and Machines. Academic Press, Vol. A (1974); Vol. B (1976). | Zbl
[8] and, On pseudovarieties. Adv. Math. 19 (1976) 413-418. | Zbl
[9] , Finite Groups. 2nd edition, Chelsea Publishing Company (1980). | Zbl | MR
[10] , Triangularization of sets of matrices. Linear Multilinear Algebra 9 (1980) 133-140. | Zbl
[11] and, Ordered monoids and -trivial monoids, in Algorithmic problems in groups and semigroups, edited by J.-C. Birget, S. Margolis, J. Meakin and M. Sapir. Birkhäuser (2000) 121-137. | Zbl
[12] , A proof of Simon's theorem on piecewise testable languages. Theor. Comp. Sci. 178 (1997) 257-264. | Zbl
[13] , On certain concepts in the theory of algebraic matrix groups. Ann. Math. 49 (1948) 774-789. | Zbl
[14] , Semigroups and Combinatorial Applications. John Wiley & Sons (1979). | Zbl | MR
[15] , Varieties of groups. Springer-Verlag (1967). | Zbl | MR
[16] , Semigroup of Matrices. World Scientific (1998). | MR
[17] , Variétés de langages formels. Masson, 1984 [French; Engl. translation: Varieties of formal languages. North Oxford Academic (1986) and Plenum (1986)]. | Zbl | MR
[18] and, Monoids of upper triangular matrices, in Semigroups. Structure and Universal Algebraic Problems, edited by G. Pollák, Št. Schwarz and O. Steinfeld. Colloquia Mathematica Societatis János Bolyai 39, North-Holland (1985) 259-272. | Zbl
[19] and, Simultaneous Triangularization. Springer-Verlag (2000). | Zbl | MR
[20] , The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | Zbl
[21] , Hierarchies of Events of Dot-Depth One. Ph.D. Thesis, University of Waterloo (1972).
[22] , Piecewise testable events, in Proc. 2nd GI Conf. Lect. Notes Comp. Sci. 33 (1975) 214-222. | Zbl
[23] , Characterization of some classes of regular events. Theor. Comp. Sci. 35 (1985) 17-42. | Zbl
[24] , On finite -trivial monoids. Semigroup Forum 19 (1980) 107-110. | Zbl
[25] , Finite semigroup varieties of the form . J. Pure Appl. Algebra 36 (1985) 53-94. | Zbl
[26] and, Partially ordered finite monoids and a theorem of I. Simon. J. Algebra 119 (1988) 393-399. | Zbl
[27] , Classification of finite monoids: the language approach. Theor. Comp. Sci. 14 (1981) 195-208. | Zbl
[28] , Subword counting and nilpotent groups, in Combinatorics on Words, Progress and Perspectives, edited by L.J. Cummings. Academic Press (1983) 297-305. | Zbl
[29] , On a class of semigroup pseudovarieties without finite pseudoidentity basis. Int. J. Algebra Computation 5 (1995) 127-135. | Zbl
[30] and, Identities of semigroups of triangular matrices over finite fields. Mat. Zametki 73 (2003) 502-510 [Russian; Engl. translation: Math. Notes 73 (2003) 474-481]. | Zbl
Cité par Sources :






