We give a bound for the -equivalence problem of polynomially bounded D0L systems which depends only on the size of the underlying alphabet.
@article{ITA_2003__37_2_149_0,
author = {Honkala, Juha},
title = {A bound for the $\sf \omega $-equivalence problem of polynomial {D0L} systems},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {149--157},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {2},
doi = {10.1051/ita:2003015},
mrnumber = {2015689},
zbl = {1112.68394},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003015/}
}
TY - JOUR AU - Honkala, Juha TI - A bound for the $\sf \omega $-equivalence problem of polynomial D0L systems JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 149 EP - 157 VL - 37 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003015/ DO - 10.1051/ita:2003015 LA - en ID - ITA_2003__37_2_149_0 ER -
%0 Journal Article %A Honkala, Juha %T A bound for the $\sf \omega $-equivalence problem of polynomial D0L systems %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 149-157 %V 37 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003015/ %R 10.1051/ita:2003015 %G en %F ITA_2003__37_2_149_0
Honkala, Juha. A bound for the $\sf \omega $-equivalence problem of polynomial D0L systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 149-157. doi: 10.1051/ita:2003015
[1] and, The -sequence equivalence problem for D0L systems is decidable. J. ACM 31 (1984) 282-298. | Zbl | MR
[2] and, On infinite words obtained by iterating morphisms. Theoret. Comput. Sci. 19 (1982) 29-38. | Zbl | MR
[3] and, Elementary homomorphisms and a solution of the D0L sequence equivalence problem. Theoret. Comput. Sci. 7 (1978) 169-183. | Zbl | MR
[4] , On infinite words generated by polynomial D0L systems. Discrete Appl. Math. 116 (2002) 297-305. | Zbl | MR
[5] , Remarks concerning the D0L -equivalence problem. Intern. J. Found. Comput. Sci. 13 (2002) 769-777. | Zbl | MR
[6] , The equivalence problem of polynomially bounded D0L systems - a bound depending only on the size of the alphabet. Theory Comput. Systems 36 (2003) 89-103. | Zbl
[7] and, The Mathematical Theory of L Systems. Academic Press, New York (1980). | Zbl | MR
[8] and (Eds.), Handbook of Formal Languages, Vols. 1-3. Springer, Berlin (1997). | Zbl | MR
[9] , On exponential growth in Lindenmayer systems. Indag. Math. 35 (1973) 23-30. | Zbl | MR
Cité par Sources :






