We prove that, with high probability, the space complexity of refuting a random unsatisfiable Boolean formula in -CNF on variables and clauses is .
Keywords: random formulae, space complexity, satisfiability threshold
@article{ITA_2002__36_4_329_0,
author = {Zito, Michele},
title = {An upper bound on the space complexity of random formulae in resolution},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {329--339},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {4},
doi = {10.1051/ita:2003003},
mrnumber = {1965420},
zbl = {1034.68050},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003003/}
}
TY - JOUR AU - Zito, Michele TI - An upper bound on the space complexity of random formulae in resolution JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 329 EP - 339 VL - 36 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003003/ DO - 10.1051/ita:2003003 LA - en ID - ITA_2002__36_4_329_0 ER -
%0 Journal Article %A Zito, Michele %T An upper bound on the space complexity of random formulae in resolution %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 329-339 %V 36 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003003/ %R 10.1051/ita:2003003 %G en %F ITA_2002__36_4_329_0
Zito, Michele. An upper bound on the space complexity of random formulae in resolution. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 4, pp. 329-339. doi: 10.1051/ita:2003003
[1] and, Optimal myopic algorithms for random 3-SAT, in 41st Annual Symposium on Foundations of Computer Science (2000) 590-600. | MR
[2] ,, and, Space complexity in propositional calculus, in Proc. of the 32nd Annual ACM Symposium on Theory of Computing. Portland, OR (2000).
[3] ,, and, On the complexity of unsatisfiability proofs for random -CNF formulas, in Proc. of the 30th Annual ACM Symposium on Theory of Computing. New York (1998) 561-571. | Zbl | MR
[4] and, Space complexity of random formulae in resolution, in Proc. of the 16th Annual IEEE Conference on Computational Complexity. IEEE Computer Society (2001).
[5] ,,, and, The scaling window of the 2-SAT transition. Random Structures Algorithms 18 (2001) 201-256. | Zbl | MR
[6] , and, Where the really hard problems are, in Proc. of IJCAI-91, edited by Kauffmann (1991) 331-337. | Zbl
[7] and, Many hard examples for resolution. J. ACM 35 (1988) 759-768. | Zbl | MR
[8] and, The relative efficiency of propositional proof systems. J. Symb. Logic 44 (1979) 36-50. | Zbl | MR
[9] , and, A machine program for theorem proving. Commun. ACM 5 (1962) 394-397. | Zbl | MR
[10] and, A computing procedure for quantification theory. J. ACM 7 (1960) 201-215. | Zbl | MR
[11] and, Space bounds for resolution, edited by C. Meinel and S. Tison, in STACS 99: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 1999, Proceedings. Springer-Verlag, Lecture Notes in Comput. Sci. 1563 (1999) 551-560. | Zbl | MR
[12] , A threshold for unsatisfiability. J. Comput. System Sci. 53 (1996) 469-486. | Zbl | MR
[13] and, A guided tour of Chernoff bounds. Inform. Process. Lett. 33 (1989) 305-308. | Zbl | MR
[14] ,,, and, Coupon collectors, -binomial coefficients and the unsatisfiability threshold, edited by A. Restivo, S. Ronchi della Rocca and L. Roversi. Theoret. Comput. Sci., in 7th Italian Conference, ICTCS 2001. Springer-Verlag, Lecture Notes in Comput. Sci. 2202 (2001) 328-338. | Zbl | MR
[15] , Beyond the quartic equation. Birkhauser, Boston, MA (1996). | Zbl | MR
[16] and, An algorithm for calculating the roots of a general quintic equation from its coefficients. J. Math. Phys. 32 (1991) 823-825. | Zbl | MR
[17] , Galois Theory. Chapman and Hall, London (1973). | Zbl | MR
[18] , Lower bounds for the space used in resolution, edited by J. Flum and M. Rodriguez-Artalejo, in Computer Science Logic: 13th International Workshop, CSL'99, 8th Annual Conference of the EACSL, Madrid, Spain, September 20-25, 1999, Proceedings. Springer-Verlag, Lecture Notes in Comput. Sci. 1683 (1999). | Zbl
[19] , Algebra. Frederick Ungar Publishing Co., New York (1970).
[20] , Handbook of Tables for Mathematics. Cleveland: The Chemical Rubber Co. (1964). | Zbl | MR
Cité par Sources :





