@article{ITA_1999__33_4-5_357_0,
author = {Davoren, J. M.},
title = {Topologies, continuity and bisimulations},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {357--381},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {4-5},
mrnumber = {1748661},
zbl = {0940.03021},
language = {en},
url = {https://www.numdam.org/item/ITA_1999__33_4-5_357_0/}
}
TY - JOUR AU - Davoren, J. M. TI - Topologies, continuity and bisimulations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 357 EP - 381 VL - 33 IS - 4-5 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_1999__33_4-5_357_0/ LA - en ID - ITA_1999__33_4-5_357_0 ER -
%0 Journal Article %A Davoren, J. M. %T Topologies, continuity and bisimulations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 357-381 %V 33 %N 4-5 %I EDP Sciences %U https://www.numdam.org/item/ITA_1999__33_4-5_357_0/ %G en %F ITA_1999__33_4-5_357_0
Davoren, J. M. Topologies, continuity and bisimulations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 357-381. https://www.numdam.org/item/ITA_1999__33_4-5_357_0/
[1] , , , , , , , and , The algorithmic analysis of hybrid Systems. Theoret. Comput. Sci. 138 (19953-34. | Zbl | MR
[2] , and , Duality and the completeness of the modal μ-calculus. Theoret Comput. Sci. 151 (1995) 3-27. | Zbl | MR
[3] and , Set-Valued Analysis. Birkhäuser, Boston (1990). | Zbl | MR
[4] and , Reinterpreting the modal μ-calculus, A. Ponse, M. de Rijke and Y. Venema, Eds., Modal Logic and Process Algebra. CLSI Publications, Stanford (1995) 65-83. | MR
[5] , Modal Logics for Continuous Dynamics. Ph. D. Thesis, Department of Mathematics Cornell University (1998). | MR
[6] , On hybrid Systems and the modal μ-calculus, P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode and S. Sastry, Eds., Hybrid Systems V. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1567 (1999) 38-69. | Zbl
[7] , , and , The tool KRONOS, R. Alur, T. Henzinger and E. D. Sontag, Eds., Hybrid Systems III. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1066 (1996) 208-219.
[8] , The theory of hybrid automata, in Proc. of 11th Annual IEEE Symposium on Logic in Computer Science (LICS'96). IEEE Computer Society Press (1996) 278-292. | MR
[9] , , and , What's decidable about hybrid automata? J. Comput. System Sci. 57 (1998) 94-124. | Zbl | MR
[10] , Logic and Bisimulation. Ph. D. Thesis, Department of Philosophy, Utrecht University (1998).
[11] and , Boolean algebras with operators, part i. Amer. J. Math. 73 (1951) 891-939. | Zbl | MR
[12] , Results on the propositional µ-calculus. Theoret Comput. Sci. 27 (1983) 333-354. | Zbl | MR
[13] , and , O-minimal hybrid Systems. Technical Report UCB/ERL M98/29, Dept. EECS, UC Berkeley (1998). | MR
[14] , and , Decidable hybrid Systems. Technical Report UCB/ERL M98/39, Dept. EECS, UC Berkeley (1998).
[15] and , Models for hybrid Systems: Automata, topologies, controllability, observability, R. Grossman, A. Nerode, A. Ravn and H. Rischel, Eds., Hybrid Systems. Springer-Verlag, Berlin, Lecture Notes in Comput Sci. 736 (1993297-316.
[16] , Topology, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 1 (1992) 641-761. | MR
[17] , Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 2 (1992) 477-563. | MR
[18] , Tame Topology and O-minimal Structures. Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser. 248 (1998). | Zbl | MR
[19] , A note on the completeness of Kozen's axiomatization of the propositonal µ-calculus. Bull. Symbolic Logic 2 (1996349-366. | Zbl | MR





