@article{ITA_1989__23_2_217_0,
author = {Degano, Pierpaolo and Gianni, Patrizia},
title = {A normal form for restricted exponential functions},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {217--231},
year = {1989},
publisher = {EDP Sciences},
volume = {23},
number = {2},
mrnumber = {1001727},
zbl = {0665.03018},
language = {en},
url = {https://www.numdam.org/item/ITA_1989__23_2_217_0/}
}
TY - JOUR AU - Degano, Pierpaolo AU - Gianni, Patrizia TI - A normal form for restricted exponential functions JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1989 SP - 217 EP - 231 VL - 23 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_1989__23_2_217_0/ LA - en ID - ITA_1989__23_2_217_0 ER -
%0 Journal Article %A Degano, Pierpaolo %A Gianni, Patrizia %T A normal form for restricted exponential functions %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1989 %P 217-231 %V 23 %N 2 %I EDP Sciences %U https://www.numdam.org/item/ITA_1989__23_2_217_0/ %G en %F ITA_1989__23_2_217_0
Degano, Pierpaolo; Gianni, Patrizia. A normal form for restricted exponential functions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 23 (1989) no. 2, pp. 217-231. https://www.numdam.org/item/ITA_1989__23_2_217_0/
1. , Orders of infinity, Cambridge Tracts in Math. Phys., 12, Cambridge University Press 1910, Reprint Hafner, New York. | JFM
2. and , Some Applications of Nevalinna Theory to Mathematical Logic: Identities of Exponential Functions, Trans. of the American Math. Soc., Vol. 282, No. 1, 1984, pp. 1-32. | Zbl | MR
3. and , Equations and Rewrite Rules: A Survey. In: Formal Languages Theory: Perspectives and Open Problems, R. BOOK Ed., Academic Press, New York, 1980, pp. 349-405.
4. , On Proving Term Rewriting Systems are Noetherian, Rep. MTP-3, Louisiana Tech. Univ., 1979.
5. , An Ordered Set of Arithmetic Functions Representing the Least ε-Number, Z. Math. Logik Grundlag. Math., Vol. 21, 1975, pp. 115-120. | Zbl | MR
6. , The Laws of Exponentiation. In: Model Theory and Arithmetic, C. BERLINE, K. MCALOON and J.-P. RESSAYRE Eds., Lecture Notes in Mathematics, No. 890, Springer-Verlag, Berlin, 1981, pp. 185-197. | Zbl | MR
7. , Equational Theories of Natural Numbers and Transfinite Ordinals, Ph. D. Thesis, Univ. of California, Berkley, 1973.
8. and , Complete Sets of Reductions for Some Equational Theories, J. of the A.C.M., Vol. 28, 1981, pp. 233-264. | Zbl | MR
9. , Equational Logic and Equational Theories of Algebras. In: Contributions to Mathematical Logic, H. A. SCHMIDT, K. SHUTTE and H. J. THIELE Eds., North-Holland, Amsterdam, 1968, pp. 275-288. | Zbl | MR
10. , On Exponentiation - A Solution to Tarskfs High School Algebra Problem. Unpublished Manuscript, quoted in Assoc. of Automated Reasoning Newsletter, Vol. 3, 1984, p. 6.






