@article{CTGDC_2008__49_1_69_0,
author = {Golasi\'nski, Marek and Stramaccia, Luciano},
title = {Weak homotopy equivalences of mapping spaces and {Vogt's} lemma},
journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
pages = {69--80},
year = {2008},
publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
volume = {49},
number = {1},
mrnumber = {2412011},
zbl = {1153.55007},
language = {en},
url = {https://www.numdam.org/item/CTGDC_2008__49_1_69_0/}
}
TY - JOUR AU - Golasiński, Marek AU - Stramaccia, Luciano TI - Weak homotopy equivalences of mapping spaces and Vogt's lemma JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2008 SP - 69 EP - 80 VL - 49 IS - 1 PB - Dunod éditeur, publié avec le concours du CNRS UR - https://www.numdam.org/item/CTGDC_2008__49_1_69_0/ LA - en ID - CTGDC_2008__49_1_69_0 ER -
%0 Journal Article %A Golasiński, Marek %A Stramaccia, Luciano %T Weak homotopy equivalences of mapping spaces and Vogt's lemma %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2008 %P 69-80 %V 49 %N 1 %I Dunod éditeur, publié avec le concours du CNRS %U https://www.numdam.org/item/CTGDC_2008__49_1_69_0/ %G en %F CTGDC_2008__49_1_69_0
Golasiński, Marek; Stramaccia, Luciano. Weak homotopy equivalences of mapping spaces and Vogt's lemma. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008) no. 1, pp. 69-80. https://www.numdam.org/item/CTGDC_2008__49_1_69_0/
[1] , Mapping spaces are equivariant absolute extensors, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. (1981), 22-25. | Zbl | MR
[2] and , Equivariant shape, Fund. Math. 127 (1987), 213-224. | Zbl | MR
[3] , Retraction properties of an orbit spaces. II (Russian), Uspekhi Mat. Nauk 48 (1993), no. 6(294), 145-146; translation in Russian Math. Surveys 48 (1993), no. 6. 156-157. | Zbl | MR
[4] , A characterization of equivariant absolute extensors and the equivarian Dugundji Theorem, Houston J. Math. Vol 31, No. 2 (2000), 451-462. | Zbl | MR
[5] and , The equivariant homotopy type of G-ANR'S for compact group actions. Dubrovnik VI - Geométrie Topology 2007, http://atlas-conferences.eom/c/a/u/w/64.htm.
[6] , Topology, Ellis Horwood (1988). | Zbl | MR
[7] and , On weak honotopy equivalences between mapping spaces, Topology vol. 37, no. 4 (1998), 709-717. | Zbl | MR
[8] and , Categorical shape theory, World Scientific (1996).
[9] and , On the categorical shape of functors, Fund. Math. 97 (1977), 157-176. | Zbl | MR
[10] , Kan Extension in Enriched Category Theory, Lecture Notes in Math. 145, Springer-Verlag, Berlin-Heidelberg-New York (1970). | Zbl | MR
[11] and , Strong shape for topological spaces, Trans. Amer. Math. Soc. 323(2) (1991), 765-796. | Zbl | MR
[12] and , Function spaces and shape theories, Fund. Math. 171 (2002), 117-154. | Zbl | MR | EuDML
[13] , , Groupoid enriched categories and homotopy theory, Canad. J. Math. 3 (1983), 385-416. | Zbl | MR
[14] , On categorical shape theory, Cahiers Topologie Géom. Différentialle Catég. 17 (3) (1976), 261-294. | Numdam | Zbl | MR | EuDML
[15] , The Whitehead theorem in equivariant shape theory, Glasnik Mat. 234 (44) (1989), 417-425. | Zbl | MR
[16] , Some questions of equivariant movability, Glasnik Mat. vol. 39 (59) (2004), 185-198. | Zbl | MR
[17] , Categories and Groupoids, Van Nostrand Reinhold Math. St., vol. 32 (1971). | Zbl | MR
[18] , Localization of Model Categories, Mathematical Surveys and Monographs 99, Am. Math. Soc., Providence, RI (2003). | Zbl
[19] , The immersion approach to triangulation and smooothing, Proc. Adv. St. on Alg. Top., Aarhus Universitet (1970). | Zbl | MR
[20] , Strong Shape and Homology, Springer Monographs in Mathematics, Springer Verlag, Berlin-Heidelberg-New York (2000). | Zbl | MR
[21] , Equivariant CW complexes and shape theory, Tsukuba J. Math. vol. 1 (1989), 157-164. | Zbl | MR
[22] , An equivariant shape theory, An. Stint. Univ. "Al. I. Cuza" Iaşi, s. la (1984), 53-67. | Zbl | MR
[23] , Groupoids and strong shape, Topology and Appl. 153 (2005), 528-539. | Zbl | MR
[24] , 2-Categorical aspect of strong shape, Topology and Appl. 153 (2006), 3007-3018. | Zbl | MR
[25] , A note on homotopy equivalences, Proc. Amer. Math. Soc. 32 (1972), 627-629. | Zbl | MR
[26] , Elements of Homotopy Theory, Springer-Verlag, New York, Heidelberg, Berlin (1978). | Zbl | MR





