@article{CTGDC_1998__39_3_221_0,
author = {Cristofori, Paola},
title = {Heegard and regular genus agree for compact $3$-manifolds},
journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
pages = {221--235},
year = {1998},
publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
volume = {39},
number = {3},
mrnumber = {1641854},
zbl = {0914.57010},
language = {en},
url = {https://www.numdam.org/item/CTGDC_1998__39_3_221_0/}
}
TY - JOUR AU - Cristofori, Paola TI - Heegard and regular genus agree for compact $3$-manifolds JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1998 SP - 221 EP - 235 VL - 39 IS - 3 PB - Dunod éditeur, publié avec le concours du CNRS UR - https://www.numdam.org/item/CTGDC_1998__39_3_221_0/ LA - en ID - CTGDC_1998__39_3_221_0 ER -
%0 Journal Article %A Cristofori, Paola %T Heegard and regular genus agree for compact $3$-manifolds %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1998 %P 221-235 %V 39 %N 3 %I Dunod éditeur, publié avec le concours du CNRS %U https://www.numdam.org/item/CTGDC_1998__39_3_221_0/ %G en %F CTGDC_1998__39_3_221_0
Cristofori, Paola. Heegard and regular genus agree for compact $3$-manifolds. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 39 (1998) no. 3, pp. 221-235. https://www.numdam.org/item/CTGDC_1998__39_3_221_0/
[1] , A note on the genus of 3-manifolds with boundary, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. XXXV (1989), 163-175 | Zbl | MR
[2] , Constructing n-manifolds from spines, to appear | Zbl | MR
[3] , An infinite class of bounded 4-manifolds having regular genus three, Boll. Un. Mat. Ital. (7) 10-A (1996), 279-303. | Zbl | MR
[4] , Classifying PL 5-manifolds by regular genus: the boundary case, Can. J. Math. 49 (2) (1997), 193-211. | Zbl | MR
[5] - - , Heegaard and regular genus of 3-manifolds with boundary, Revista Mat. Universidad Complutense Madrid 8 (2) (1995), 379-398. | Zbl | MR
[6] - - , A graph-theoretical representation of PL-manifolds - A survey on crystallizations, Aequationes Math. 31 (1986), 121-141. | Zbl | MR
[7] , A combinatorial characterization of 3-manifolds crystallisations, Boll. Un. Mat. Ital. 16-A (1979), 441-449. | Zbl | MR
[8] , Regular imbeddings of edge-coloured graphs, Geom. Dedicata 11 (1981), 397-414. | Zbl | MR
[9] Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (1981), 473-481. | Zbl | MR
[10] Regular genus: the boundary case, Geom. Dedicata 22 (1987), 261-281. | Zbl | MR
[11] The only genus zero n-manifold is Sn, Proc. Amer. Math. Soc. 85 (1982), 638-642. | Zbl | MR
[12] , Forstudier til topologisk teori för de algebraiske Sammenhäeng, Nordiske Forlag Ernst Bojesen, Copenhagen (1898); french translation: Bull. Soc. Math. France 44 (1916), 161-212.
[13] - , An introduction to algebraic topology - Homology theory, Cambridge Univ. Press (1960). | Zbl | MR
[14] , Representing 3-manifolds by a universal branching set, Math. Proc. Camb. Phil. Soc. 94 (1983), 109-123. | Zbl | MR





