@article{CTGDC_1993__34_3_239_0,
author = {Trnkov\'a, V\v{e}ra},
title = {Universal concrete categories and functors},
journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
pages = {239--256},
year = {1993},
publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
volume = {34},
number = {3},
mrnumber = {1239471},
zbl = {0797.18003},
language = {en},
url = {https://www.numdam.org/item/CTGDC_1993__34_3_239_0/}
}
TY - JOUR AU - Trnková, Věra TI - Universal concrete categories and functors JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1993 SP - 239 EP - 256 VL - 34 IS - 3 PB - Dunod éditeur, publié avec le concours du CNRS UR - https://www.numdam.org/item/CTGDC_1993__34_3_239_0/ LA - en ID - CTGDC_1993__34_3_239_0 ER -
%0 Journal Article %A Trnková, Věra %T Universal concrete categories and functors %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1993 %P 239-256 %V 34 %N 3 %I Dunod éditeur, publié avec le concours du CNRS %U https://www.numdam.org/item/CTGDC_1993__34_3_239_0/ %G en %F CTGDC_1993__34_3_239_0
Trnková, Věra. Universal concrete categories and functors. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 34 (1993) no. 3, pp. 239-256. https://www.numdam.org/item/CTGDC_1993__34_3_239_0/
1 , , , Abstract and Concrete Categories, A Wiley - hiterscience Publication, Jolm Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore, 1990. | Zbl | MR
2 , , De Morgan algebras are universal, Discrete Math. 66 (1987) 1-13. | Zbl | MR
3 , , Semigroups with few endomorphisms, J. of the Australian Math. Soc. 10 (1969) 162-168. | Zbl | MR
4 , , Homomorphisms of integral domains of characteristic zero, Trans. Amer. Math. Soc. 225 (1977) 163-182. | Zbl | MR
5 , , Universal varieties of (0,1)-lattices, Canad. J. Math. 42 (1990) 470-490. | Zbl | MR
6 , Extension of structures and full embeddings of categories, Actes du Congrès Internat. des Mathematiciens 1970, tome 1, Paris 1971, 319-322. | Zbl | MR
7 , Two set-theoretical theorems in categories, Fund. Math. 53 (1963) 43-49. | Zbl | MR
8 , Each concrete category has a representation by T2-paracompact topological spaces, Comment. Math. Univ. Carolinae 15 (1974) 655-663. | Zbl | MR
9 , , Universal varieties of semigroups, J. Austral. Math. Soc. Ser. A 36 (1984) 143-152. | Zbl | MR
10 , , Universal varieties of distributive double p-algebras, Glasgow Math. J. 26 (1985) 121-131. | Zbl | MR
11 , Every category is a factorization of a concrete one, J. Pure Appl. Alg. 1 (1971) 373-376. | Zbl | MR
12 , Testing categories and strong universality, Canad. J. Math. 25 (1973) 370-385. | Zbl | MR
13 , , Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam 1980. | Zbl | MR
14 Universal categories, Comment. Math. Univ. Carolinae 7 (1966) 143-206. | Zbl | MR
15 , Universalities, to appear. | Zbl
16 , The categories of presheaves containing any category of algebras, Dissertationes Mathematicae 124 (1975) 1-58. | Zbl | MR





