This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µ in three dimensions, where λ and μ are Lipschitz continuous and V ∈ L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.
Keywords: Lamé system, Carleman estimate, strong unique continuation
@article{COCV_2011__17_3_761_0,
author = {Yu, Hang},
title = {Strong unique continuation for the {Lam\'e} system with {Lipschitz} coefficients in three dimensions},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {761--770},
year = {2011},
publisher = {EDP Sciences},
volume = {17},
number = {3},
doi = {10.1051/cocv/2010021},
mrnumber = {2826979},
zbl = {1227.35109},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2010021/}
}
TY - JOUR AU - Yu, Hang TI - Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 761 EP - 770 VL - 17 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010021/ DO - 10.1051/cocv/2010021 LA - en ID - COCV_2011__17_3_761_0 ER -
%0 Journal Article %A Yu, Hang %T Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 761-770 %V 17 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010021/ %R 10.1051/cocv/2010021 %G en %F COCV_2011__17_3_761_0
Yu, Hang. Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 761-770. doi: 10.1051/cocv/2010021
[1] and , Strong unique continuation for the Lamé system of elasticity. Comm. P. D. E. 26 (2001) 1787-1810. | Zbl | MR
[2] , , and , Unique continuation for a stationary isotropic Lamé system with varaiable coefficients. Comm. P. D. E. 23 (1998) 371-385. | Zbl | MR
[3] and , La propriété du prolongement unique pour un système elliptique : le système de Lamé. J. Math. Pures Appl. 72 (1993) 475-492. | Zbl | MR
[4] , Carleman estimates for some elliptic systems. J. Phys. Conference Series 124 (2008) 012023.
[5] , Unique continuation for the system of elasticity in the plan. Proc. Amer. Math. Soc. 134 (2005) 2015-2018. | Zbl | MR
[6] , and , The Calderón problem with partial data. Ann. Math. 165 (2007) 567-591. | Zbl | MR
[7] , and , Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients. arXiv:0901.4638 (2009). | Zbl | MR
[8] and , Strong unique continuation for the Lamé system with Lipschitz coefficients. Math. Ann. 331 (2005) 611-629. | Zbl | MR
[9] , An introduction to semiclassical and microlocal analysis. Springer-Verlag (2002). | Zbl | MR
[10] , Strong uniqueness for second order differential operators J. Differ. Equ. 141 (1997) 201-217. | Zbl | MR
[11] and , Carleman estimates and inverse problems for Dirac operators. Math. Ann. 344 (2009) 161-184. | Zbl | MR
[12] , Außnraumaufgaben in der Theorie stationärer Schwingungen inhomogener elasticher Körper. Math. Z. 111 (1969) 387-398. | Zbl | MR
[13] , Unique continuation for systems with Lamé principal part. Math. Methods Appl. Sci. 24 (2001) 595-605. | Zbl | MR
[14] , Three spheres inequalities and unique continuation for a three-dimensional Lamé system of elasticity with C1 coeffients. arXiv:0811.1262 (2008).
Cité par Sources :





