We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.
Keywords: ∞-laplacian, Neumann boundary condition, principal eigenvalue, viscosity solutions
@article{COCV_2011__17_2_575_0,
author = {Patrizi, Stefania},
title = {The principal eigenvalue of the $\infty $-laplacian with the {Neumann} boundary condition},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {575--601},
year = {2011},
publisher = {EDP Sciences},
volume = {17},
number = {2},
doi = {10.1051/cocv/2010019},
mrnumber = {2801332},
zbl = {1219.35074},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2010019/}
}
TY - JOUR AU - Patrizi, Stefania TI - The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 575 EP - 601 VL - 17 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010019/ DO - 10.1051/cocv/2010019 LA - en ID - COCV_2011__17_2_575_0 ER -
%0 Journal Article %A Patrizi, Stefania %T The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 575-601 %V 17 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010019/ %R 10.1051/cocv/2010019 %G en %F COCV_2011__17_2_575_0
Patrizi, Stefania. The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 575-601. doi: 10.1051/cocv/2010019
[1] , Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 752-728. | Zbl | MR
[2] , and , A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. (N.S.) 41 (2004) 439-505. | Zbl | MR
[3] , and , The principal eigenvalue and maximum principle for second order elliptic operators in general domain. Comm. Pure Appl. Math. 47 (1994) 47-92. | Zbl | MR
[4] and , Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators. Comm. Pure Appl. Anal. 6 (2007) 335-366. | Zbl | MR
[5] , , , Nonlinear eigenvalues and bifurcation problems for Pucci's operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 187-206. | Zbl | MR | Numdam
[6] , and , User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. | Zbl | MR
[7] and , Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137. American Mathematical Society (1999). | Zbl | MR
[8] , , and , Steklov eigenvalues for the ∞-Laplacian. Rend. Lincei Mat. Appl. 17 (2006) 199-210. | Zbl | MR
[9] and , Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Diff. Equ. 83 (1990) 26-78. | Zbl | MR
[10] and , Demi-eigenvalues for uniformly elliptic Isaacs operators. Preprint.
[11] , Principal eigenvalue of a very badly degenerate operator and applications. J. Diff. Equ. 236 (2007) 532-550. | Zbl | MR
[12] and , On the evolution governed by the infinity Laplacian. Math. Ann. 335 (2006) 819-851. | Zbl | MR
[13] , and , The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148 (1999) 89-105. | Zbl | MR
[14] , On a nonlinear eigenvalue problem. Report 68, Univ. Jyväskylä, Jyväskylä (1995) 33-54. | Zbl | MR
[15] , Bifurcation and optimal stochastic control. Nonlinear Anal. 7 (1983) 177-207. | MR
[16] , The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl. 90 (2008) 286-311. | Zbl | MR
[17] , Principal eigenvalues for Isaacs operators with Neumann boundary conditions. NoDEA 16 (2009) 79-107. | Zbl | MR
[18] , , and , Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22 (2009) 167-210. | Zbl | MR
[19] , Existence of positive solutions to a “semilinear” equation involving the Pucci's operators in a convex domain. Diff. Integral Equations 17 (2004) 481-494. | Zbl
[20] and , Principal eigenvalues and the Dirichlet problem for fully nonlinear operators. Adv. Math. 218 (2008) 105-135. | Zbl | MR
Cité par Sources :





