We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.
Keywords: minimal time function, Hamilton-Jacobi equations, viscosity solutions, minimal trajectories, eikonal equations, monotonicity of trajectories, proximal analysis, nonsmooth analysis
@article{COCV_2006__12_1_120_0,
author = {Nour, Chadi},
title = {Semigeodesics and the minimal time function},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {120--138},
year = {2006},
publisher = {EDP Sciences},
volume = {12},
number = {1},
doi = {10.1051/cocv:2005032},
mrnumber = {2192071},
zbl = {1114.49028},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2005032/}
}
TY - JOUR AU - Nour, Chadi TI - Semigeodesics and the minimal time function JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 120 EP - 138 VL - 12 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2005032/ DO - 10.1051/cocv:2005032 LA - en ID - COCV_2006__12_1_120_0 ER -
Nour, Chadi. Semigeodesics and the minimal time function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 1, pp. 120-138. doi: 10.1051/cocv:2005032
[1] , and, Uniqueness of lower semicontinuous viscosity solutions for the minimum time problem. SIAM J. Control Optim. 38 (2000) 470-481. | Zbl | MR
[2] and, Differential inclusions. Springer-Verlag, New York (1984). | Zbl | MR
[3] and, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. With appendices by Maurizio Falcone and Pierpaolo Soravia. Birkhäuser Boston, Inc., Boston, MA (1997). | Zbl | MR
[4] and, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equations 15 (1990) 1713-1742. | Zbl | MR
[5] and, Convexity properties of the minimum time function. Calc. Var. 3 (1995) 273-298. | Zbl | MR
[6] and, Semiconcave functions, Hamilton-Jacobi equations and optimal control problems. Birkhäuser Boston (2004). | Zbl | MR
[7] , and, Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim. 36 (1997) 21-42. | Zbl | MR
[8] and, Mean value inequalities in Hilbert space. Trans. Amer. Math. Soc. 344 (1994) 307-324. | Zbl | MR
[9] ,, and, Qualitative properties of trajectories of control systems: A survey. J. Dynam. Control Syst. 1 (1995) 1-48. | Zbl | MR
[10] ,, and, Nonsmooth Analysis and Control Theory. Graduate Texts Math. 178 (1998). Springer-Verlag, New York. | Zbl | MR
[11] and, The Hamilton-Jacobi equation of minimal time control. J. Convex Anal. 11 (2004) 413-436. | Zbl | MR
[12] , and, User's guide to the viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | Zbl | MR
[13] and, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | Zbl | MR
[14] and, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993). | Zbl | MR
[15] , Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257-272. | Zbl | MR
[16] , The Hamilton-Jacobi equation in optimal control: duality and geodesics. Ph.D. Thesis, Université Claude Bernard Lyon I (2003).
[17] , The bilateral minimal time function. J. Convex Anal., to appear. | Zbl | MR
[18] , Discontinuous viscosity solutions to Dirichlet problems for Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Differ. Equ. 18 (1993) 1493-1514. | Zbl | MR
[19] , A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158-133. | Zbl | MR
[20] , Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94 (1997) 335-363. | Zbl | MR
[21] , Optimal control. Birkhäuser Boston, Inc., Boston, MA (2000). | Zbl | MR
[22] and, Proximal analysis and the minimal time function. SIAM J. Control Optim. 36 (1998) 1048-1072. | Zbl | MR
Cité par Sources :





