Cortés, Jorge; Martínez, Sonia; Bullo, Francesco
Spatially-distributed coverage optimization and control with limited-range interactions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4 , p. 691-719
Zbl 1080.90070 | MR 2167880
doi : 10.1051/cocv:2005024
URL stable :

Classification:  37N35,  49J52,  68W15,  93D20
This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with respect to appropriate proximity graphs. Numerical simulations illustrate the results.


[1] R.C. Arkin, Behavior-Based Robotics. Cambridge, Cambridge University Press (1998).

[2] Y. Asami, A note on the derivation of the first and second derivative of objective functions in geographical optimization problems. J. Faculty Engineering, The University of Tokio (B) XLI (1991) 1-13.

[3] R.G. Bartle, The Elements of Integration and Lebesgue Measure, 1st edn. Wiley-Interscience (1995). MR 1312157 | Zbl 0838.28001

[4] M. De Berg, M. Van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications. New York, Springer-Verlag (1997). MR 1470713 | Zbl 0877.68001

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,Cambridge University Press (2004). MR 2061575 | Zbl 1058.90049

[6] A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics. 3rd edn., Ser. Texts in Applied Mathematics. New York, Springer-Verlag 4 (1994). Zbl 0774.76001

[7] J. Cortés and F. Bullo, Coordination and geometric optimization via distributed dynamical systems. SIAM J. Control Optim. (June 2004), to appear. MR 2193495 | Zbl 1108.37058

[8] J. Cortés, S. Martínez, T. Karatas and F. Bullo, Coverage control for mobile sensing networks. IEEE Trans. Robotics Automat. 20 (2004) 243-255.

[9] R. Diestel, Graph Theory. 2nd edn., Ser. Graduate Texts in Mathematics. New York, Springer-Verlag 173 (2000). MR 1743598 | Zbl 0945.05002

[10] Z. Drezner and H.W. Hamacher, Eds., Facility Location: Applications and Theory. New York, Springer-Verlag (2001). MR 1933965 | Zbl 0988.00044

[11] Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41 (1999) 637-676. Zbl 0983.65021

[12] H. Edelsbrunner and N.R. Shah, Triangulating topological spaces. Internat. J. Comput. Geom. Appl. 7 (1997) 365-378. Zbl 0887.57028

[13] J. Gao, L.J. Guibas, J. Hershberger, L. Zhang and A. Zhu, Geometric spanner for routing in mobile networks, in ACM International Symposium on Mobile Ad-Hoc Networking & Computing (MobiHoc). Long Beach, CA (Oct. 2001) 45-55.

[14] R.M. Gray and D.L. Neuhoff, Quantization. IEEE Trans. Inform. Theory 44 (1998) 2325-2383. Commemorative Issue 1948-1998. Zbl 1016.94016

[15] U. Helmke and J. Moore, Optimization and Dynamical Systems. New York, Springer-Verlag (1994). MR 1299725 | Zbl 0984.49001

[16] A. Jadbabaie, J. Lin and A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48 (2003) 988-1001.

[17] J.W. Jaromczyk and G.T. Toussaint, Relative neighborhood graphs and their relatives. Proc. of the IEEE 80 (1992) 1502-1517.

[18] H.K. Khalil, Nonlinear Systems. Englewood Cliffs, Prentice Hall (1995). Zbl 1003.34002

[19] J.P. Lasalle, The Stability and Control of Discrete Processes. Ser. Applied Mathematical Sciences. New York, Springer-Verlag 62 (1986). MR 866669 | Zbl 0606.93001

[20] X.-Y. Li, Algorithmic, geometric and graphs issues in wireless networks. Wireless Communications and Mobile Computing 3 (2003) 119-140.

[21] D.G. Luenberger, Linear and Nonlinear Programming. Reading, Addison-Wesley (1984). Zbl 0571.90051

[22] J. Marshall, M. Broucke and B. Francis, Formations of vehicles in cyclic pursuit. IEEE Trans. Automat. Control 49 (2004) 1963-1974.

[23] A. Okabe, B. Boots, K. Sugihara and S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. 2nd edn., Ser. Wiley Series in Probability and Statistics. New York, John Wiley & Sons (2000). MR 1770006 | Zbl 0946.68144

[24] A. Okabe and A. Suzuki, Locational optimization problems solved through Voronoi diagrams. European J. Oper. Res. 98 (1997) 445-56. Zbl 0930.90059

[25] A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophysics 22 (1986) 1-94.

[26] R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004) 1520-1533.

[27] K.M. Passino, Biomimicry for Optimization, Control, and Automation. New York, Springer-Verlag (2004). Zbl 1080.93002

[28] C.W. Reynolds, Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21 (1987) 25-34.

[29] K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc. of the IEEE 80 (1998) 2210-2239.

[30] A.R. Teel, Nonlinear systems: discrete-time stability analysis. Lecture Notes, University of California at Santa Barbara (2004).