In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e.
@article{COCV_2005__11_1_72_0,
author = {Mancini, Gianni and Srikanth, P. N.},
title = {On periodic motions of a two dimensional {Toda} type chain},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {72--87},
year = {2005},
publisher = {EDP Sciences},
volume = {11},
number = {1},
doi = {10.1051/cocv:2004033},
mrnumber = {2110614},
zbl = {1096.37049},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004033/}
}
TY - JOUR AU - Mancini, Gianni AU - Srikanth, P. N. TI - On periodic motions of a two dimensional Toda type chain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 72 EP - 87 VL - 11 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004033/ DO - 10.1051/cocv:2004033 LA - en ID - COCV_2005__11_1_72_0 ER -
%0 Journal Article %A Mancini, Gianni %A Srikanth, P. N. %T On periodic motions of a two dimensional Toda type chain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 72-87 %V 11 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004033/ %R 10.1051/cocv:2004033 %G en %F COCV_2005__11_1_72_0
Mancini, Gianni; Srikanth, P. N. On periodic motions of a two dimensional Toda type chain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 72-87. doi: 10.1051/cocv:2004033
[1] , Sobolev Spaces. A.P (1975). | Zbl | MR
[2] , Proof of a Theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18 (1963) 9-36. | Zbl
[3] and, Forced vibrations for a nonlinear wave equation. CPAM, XXXI(1) (1978) 1-30. | Zbl
[4] , and, Free Vibrations for a Nonlinear Wave Equation and a Theorem of P. Rabinowitz. CPAM, XXXIII (1980) 667-684. | Zbl
[5] and, Existence Theorem for Solitary Waves on Lattices. Commun. Math. Phys. 161 (1994) 391-418. | Zbl
[6] , Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity 13 (2000) 849-866. | Zbl
[7] and, Convex Functions and Orlicz Spaces. Internat. Monogr. Adv. Math. Phys. Hindustan Publishing Corpn., India (1962).
[8] , Periodic solutions of a weakly nonlinear wave equation in one dimension. Czechmath. J. 19 (1969) 324-342. | Zbl
[9] , On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, K1 2 (1962) 1. | Zbl | MR
[10] , Integrability of a Two-Dimensional Generalization of the Toda Chain. JETP Lett. 30 (1979) 414-413.
[11] , Variational Methods in nonlinear problems. M. Giaquinta Ed., Springer-Verlag, Lect. Notes Math. 1365 (1987). | Zbl | MR
[12] , Periodic solutions of Hamiltonian Systems. Comm. Pure Appl. Math. 31 (1978) 157-184. | Zbl
[13] and, On periodic Motions of Lattices of Toda Type via Critical Point Theory. Arch. Ration. Mech. Anal. 126 (1994) 369-385. | Zbl
[14] , Theory of Nonlinear Lattices. Springer-Verlag (1989). | Zbl | MR
Cité par Sources :





