In this article we are interested in the following problem: to find a map that satisfies
Keywords: rank one convex hull, polyconvex hull, differential inclusion, isotropic set
@article{COCV_2005__11_1_122_0,
author = {Croce, Gisella},
title = {A differential inclusion : the case of an isotropic set},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {122--138},
year = {2005},
publisher = {EDP Sciences},
volume = {11},
number = {1},
doi = {10.1051/cocv:2004035},
mrnumber = {2110617},
zbl = {1092.34004},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004035/}
}
TY - JOUR AU - Croce, Gisella TI - A differential inclusion : the case of an isotropic set JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 122 EP - 138 VL - 11 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004035/ DO - 10.1051/cocv:2004035 LA - en ID - COCV_2005__11_1_122_0 ER -
%0 Journal Article %A Croce, Gisella %T A differential inclusion : the case of an isotropic set %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 122-138 %V 11 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004035/ %R 10.1051/cocv:2004035 %G en %F COCV_2005__11_1_122_0
Croce, Gisella. A differential inclusion : the case of an isotropic set. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 122-138. doi: 10.1051/cocv:2004035
[1] and, Equivalence between rank-one convexity and polyconvexity for isotropic sets of . I. Nonlinear Anal. 50 (2002) 1179-1199. | Zbl
[2] , Ph.D. Thesis (2004).
[3] and, Implicit partial differential equations. Progr. Nonlinear Diff. Equ. Appl. 37 (1999). | Zbl | MR
[4] and, A general existence theorem for differential inclusions in the vector valued case. Submitted. | Zbl
[5] , Partial differential relations. Ergeb. Math. Grenzgeb. 9 (1986). | Zbl | MR
[6] and, Topics in matrix analysis. Cambridge University Press, Cambridge (1991). | Zbl | MR
[7] , Non-compact lamination convex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 391-403. | Zbl | Numdam
[8] and, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157 (2003) 715-742. | Zbl
[9] , Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (1997). Reprint of the 1970 original, Princeton Paperbacks. | Zbl | MR
Cité par Sources :





