A homogenization problem related to the micromagnetic energy functional is studied. In particular, the existence of the integral representation for the homogenized limit of a family of energies
Keywords: micromagnetics, homogenization, $\Gamma $-convergence
@article{COCV_2004__10_2_295_0,
author = {Pisante, Giovanni},
title = {Homogenization of micromagnetics large bodies},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {295--314},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {2},
doi = {10.1051/cocv:2004008},
mrnumber = {2083489},
zbl = {1074.35014},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004008/}
}
TY - JOUR AU - Pisante, Giovanni TI - Homogenization of micromagnetics large bodies JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 295 EP - 314 VL - 10 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004008/ DO - 10.1051/cocv:2004008 LA - en ID - COCV_2004__10_2_295_0 ER -
%0 Journal Article %A Pisante, Giovanni %T Homogenization of micromagnetics large bodies %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 295-314 %V 10 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004008/ %R 10.1051/cocv:2004008 %G en %F COCV_2004__10_2_295_0
Pisante, Giovanni. Homogenization of micromagnetics large bodies. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 295-314. doi: 10.1051/cocv:2004008
[1] , and, Asymptotic behavior of the Landau-Lifshitz model of ferromagnetism. Appl. Math. Optim. 23 (1991) 171-192. | Zbl | MR
[2] , and, Local minimizers in micromagnetics and related problems. Calc. Var. Partial Differ. Equ. 14 (2002) 1-27. | Zbl | MR
[3] and, Homogenization of multiple integrals. The Clarendon Press Oxford University Press, New York, Oxford Lecture Ser. Math. Appl. 12 (1998). | Zbl | MR
[4] , and, A-quasiconvexity: relaxation and homogenization. ESAIM: COCV 5 (2000) 539-577 (electronic). | Zbl | MR | Numdam
[5] Jr. Brown and W. Fuller, Micromagnetics. Interscience Publishers, John Wiley & Sons, New York, London (1963).
[6] , Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). | Zbl | MR
[7] and, A-B quasiconvexity and implicit partial differential equations. Calc. Var. Partial Differ. Equ. 14 (2002) 115-149. | Zbl | MR
[8] , An introduction to -convergence. Birkhäuser Boston Inc., Boston, MA Prog. Nonlinear Differ. Equ. Appl. 8 (1993). | Zbl | MR
[9] , Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125 (1993) 99-143. | Zbl | MR
[10] , Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591-603. Microstructure and phase transitions in solids (Udine, 1994). | Zbl | MR
[11] simone, R.V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408-1460. | Zbl | MR
[12] ,, and, A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A 131 (2001) 833-844. | Zbl | MR
[13] and, Relaxation results in micromagnetics. Ricerche Mat. 49 (2000) (suppl.) 269-304. Contributions in honor of the memory of Ennio De Giorgi (Italian). | Zbl | MR
[14] and, Frustration in ferromagnetic materials. Contin. Mech. Thermodyn. 2 (1990) 215-239. | MR
[15] and, Teoreticheskaya fizika. Tome VIII. “Nauka”, Moscow, third edition (1992). Elektrodinamika sploshnykh sred. [Electrodynamics of continuous media], with a preface by Lifshits and L.P. Pitaevskiĭ, edited and with a preface by Pitaevskiĭ.
[16] , On mathematical tools for studying partial differential equations of continuum physics: -measures and Young measures. Plenum, New York, in Developments in partial differential equations and applications to mathematical physics (Ferrara, 1991), (1992) 201-217. | Zbl | MR
[17] , Beyond Young measures. Meccanica 30 (1995) 505-526. Microstructure and phase transitions in solids (Udine, 1994). | Zbl | MR
[18] , On Landau-Lifshitz' equations for ferromagnetism. Japan J. Appl. Math. 2 (1985) 69-84. | Zbl
Cité par Sources :






