We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton-Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.
Keywords: hysteresis, optimal control, dynamic programming, viscosity solutions
@article{COCV_2004__10_2_271_0,
author = {Bagagiolo, Fabio},
title = {Viscosity solutions for an optimal control problem with {Preisach} hysteresis nonlinearities},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {271--294},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {2},
doi = {10.1051/cocv:2004007},
mrnumber = {2083488},
zbl = {1068.49024},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004007/}
}
TY - JOUR AU - Bagagiolo, Fabio TI - Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 271 EP - 294 VL - 10 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004007/ DO - 10.1051/cocv:2004007 LA - en ID - COCV_2004__10_2_271_0 ER -
%0 Journal Article %A Bagagiolo, Fabio %T Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 271-294 %V 10 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004007/ %R 10.1051/cocv:2004007 %G en %F COCV_2004__10_2_271_0
Bagagiolo, Fabio. Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 271-294. doi: 10.1051/cocv:2004007
[1] , An infinite horizon optimal control problem for some switching systems. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 443-462. | Zbl | MR
[2] , Dynamic programming for some optimal control problems with hysteresis. NoDEA Nonlinear Differ. Equ. Appl. 9 (2002) 149-174. | Zbl | MR
[3] , Optimal control of finite horizon type for a multidimensional delayed switching system. Department of Mathematics, University of Trento, Preprint No. 647 (2003). | Zbl | MR
[4] and, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). | Zbl
[5] and, Fully nonlinear Neumann type boundary conditions for first-order Hamilton-Jacobi equations. Nonlinear Anal. 16 (1991) 143-153. | Zbl
[6] and, Optimal control of dynamic systems with hysteresis. Int. J. Control 73 (2000) 22-28. | Zbl | MR
[7] and, Dynamic programming for systems with hysteresis. Physica B Condensed Matter 306 (2001) 200-205.
[8] , ODE control problems including the Preisach hysteresis operator: Necessary optimality conditions, in Dynamic Economic Models and Optimal Control, G. Feichtinger Ed., North-Holland, Amsterdam (1992) 51-68. | MR
[9] and, Hysteresis and Phase Transitions. Springer, Berlin (1997). | Zbl | MR
[10] and, Hamilton-Jacobi equations in infinite dimensions. Part I: Uniqueness of solutions. J. Funct. Anal. 62 (1985) 379-396. | Zbl | MR
[11] , Magnetic Hysteresis. IEEE Press, New York (1999).
[12] and, Systems with Hysteresis. Springer, Berlin (1989). Russian Ed. Nauka, Moscow (1983). | MR
[13] , Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo (1996).
[14] , A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 105-135. | Zbl | MR | Numdam
[15] , and, Optimal control of a bioreactor with modal switching. Math. Models Methods Appl. Sci. 11 (2001) 933-949. | Zbl | MR
[16] , Neumann type boundary condition for Hamilton-Jacobi equations. Duke Math. J. 52 (1985) 793-820. | Zbl | MR
[17] , Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: the case of bounded stochastic evolutions. Acta Math. 161 (1988) 243-278. | Zbl | MR
[18] , Mathematical Models of Hysteresis. Springer, New York (1991). | Zbl | MR
[19] and, Optimal control of hysteresis in smart actuators: a viscosity solutions approach. Center for Dynamics and Control of Smart Actuators, preprint (2002). | Zbl
[20] and, Adaptive Control of Systems with Actuator and Sensor Nonlinearities. John Wiley & Sons, New York (1996). | Zbl | MR
[21] , Differential Models of Hysteresis. Springer, Heidelberg (1994). | Zbl | MR
Cité par Sources :





