We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.
Keywords: optimal design, disk, moment of inertia, Sturm-Liouville problem, least eigenvalue, rearrangement, Helly's principle, calculus of variations
@article{COCV_2003__9__217_0,
author = {Belinskiy, Boris P. and McCarthy, C. Maeve and Walters, Terry J.},
title = {Optimal design of turbines with an attached mass},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {217--230},
year = {2003},
publisher = {EDP Sciences},
volume = {9},
doi = {10.1051/cocv:2003011},
mrnumber = {1957100},
zbl = {1066.49025},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003011/}
}
TY - JOUR AU - Belinskiy, Boris P. AU - McCarthy, C. Maeve AU - Walters, Terry J. TI - Optimal design of turbines with an attached mass JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 217 EP - 230 VL - 9 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003011/ DO - 10.1051/cocv:2003011 LA - en ID - COCV_2003__9__217_0 ER -
%0 Journal Article %A Belinskiy, Boris P. %A McCarthy, C. Maeve %A Walters, Terry J. %T Optimal design of turbines with an attached mass %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 217-230 %V 9 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003011/ %R 10.1051/cocv:2003011 %G en %F COCV_2003__9__217_0
Belinskiy, Boris P.; McCarthy, C. Maeve; Walters, Terry J. Optimal design of turbines with an attached mass. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 217-230. doi: 10.1051/cocv:2003011
[1] , Elementary Partial Differential Equations with Boundary Value Problems. Academic Press, Orlando, Florida (1986).
[2] , Eigenwertaufgaben Mit Technischen Anwendungen1963) 41-42 (in German). | Zbl | MR
[3] , The Two Phase Drum with the Deepest Base Note. Japan J. Ind. Appl. Math. 8 (1991) 345-355. | Zbl | MR
[4] and, The Shape of the Tallest Column. SIAM J. Math. Anal. 29 (1998) 1-8. | Zbl | MR
[5] , On some recent approaches to structural optimization. J. Sounds & Vibration 32 (1974) 49-70. | Zbl
[6] , Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition. SIAM J. Math. Anal. 12 (1981) 572-584. | Zbl | MR
[7] , An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Quart. J. Math. Oxford 2 (1979) 33-42. | Zbl | MR
[8] and, The tallest column. J. Math. Mech. 16 (1966) 433-446. | Zbl | MR
[9] and, Isoperimetric Inequalites in Mathematical Physics. Princeton University Press, Princeton, NJ, Ann. Math. Stud. 27 (1951). | Zbl | MR
[10] and, Integral Equations. Cambridge University Press, Cambridge, UK (1990). | Zbl | MR
[11] , Principles of Mathematical Analysis, 3rd Ed. McGraw-Hill, New York (1976). | Zbl | MR
[12] , Minimum mass bar for axial vibrations at specified natural frequency. AIAA J. 5 (1967) 1911-1913.
[13] , The strongest column: The energy approach. J. Appl. Mech. 34 (1967) 486-487.
[14] and, On the optimal design of columns. AIAA J. 6 (1968) 1497-1502. | Zbl
[15] , Design of minimum mass structures with specified natural frequencies. AIAA J. 5 (1967) 406-412. | Zbl
Cité par Sources :





