We discuss some implications of linear programming for Mather theory [13, 14, 15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an -dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [6, 7, 8, 5].
Keywords: linear programming, duality, weak KAM theory
@article{COCV_2002__8__693_0,
author = {Evans, L. C. and Gomes, D.},
title = {Linear programming interpretations of {Mather's} variational principle},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {693--702},
year = {2002},
publisher = {EDP Sciences},
volume = {8},
doi = {10.1051/cocv:2002030},
zbl = {1090.90143},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002030/}
}
TY - JOUR AU - Evans, L. C. AU - Gomes, D. TI - Linear programming interpretations of Mather's variational principle JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 693 EP - 702 VL - 8 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002030/ DO - 10.1051/cocv:2002030 LA - en ID - COCV_2002__8__693_0 ER -
%0 Journal Article %A Evans, L. C. %A Gomes, D. %T Linear programming interpretations of Mather's variational principle %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 693-702 %V 8 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002030/ %R 10.1051/cocv:2002030 %G en %F COCV_2002__8__693_0
Evans, L. C.; Gomes, D. Linear programming interpretations of Mather's variational principle. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 693-702. doi: 10.1051/cocv:2002030
[1] and, Linear Programming in Infinite Dimensional Spaces. Wiley (1987). | Zbl | MR
[2] and, Introduction to Linear Optimization. Athena Scientific (1997). | Zbl
[3] , Partial differential equations and Monge-Kantorovich mass transfer (survey paper). Available at the website of LCE, at math.berkeley.edu | Zbl
[4] , Some new PDE methods for weak KAM theory. Calc. Var. Partial Differential Equations (to appear). | Zbl | MR
[5] and, Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Rational Mech. Anal. 157 (2001) 1-33. | Zbl | MR
[6] , Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043-1046. | Zbl | MR
[7] , Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649-652. | Zbl | MR
[8] , Weak KAM theory in Lagrangian Dynamics, Preliminary Version. Lecture Notes (2001).
[9] , Methods of Mathematical Economics. SIAM, Classics in Appl. Math. 37 (2002). | Zbl | MR
[10] , Numerical methods and Hamilton-Jacobi equations (to appear).
[11] , Linear Algebra. John Wiley (1997). | Zbl | MR
[12] , and, Homogenization of Hamilton-Jacobi equations. CIRCA (1988) (unpublished).
[13] , Minimal measures. Comment. Math Helvetici 64 (1989) 375-394. | Zbl | MR
[14] , Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. | Zbl | MR
[15] and, Action minimizing orbits in Hamiltonian systems. Transition to Chaos in Classical and Quantum Mechanics, edited by S. Graffi. Sringer, Lecture Notes in Math. 1589 (1994). | Zbl | MR
Cité par Sources :





