This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.
Keywords: homogenization, Bloch waves, correctors, regularity, spectral problems, vibration problems
@article{COCV_2002__8__489_0,
author = {Conca, Carlos and Vanninathan, M.},
title = {Fourier approach to homogenization problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {489--511},
year = {2002},
publisher = {EDP Sciences},
volume = {8},
doi = {10.1051/cocv:2002048},
mrnumber = {1932961},
zbl = {1065.35045},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002048/}
}
TY - JOUR AU - Conca, Carlos AU - Vanninathan, M. TI - Fourier approach to homogenization problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 489 EP - 511 VL - 8 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002048/ DO - 10.1051/cocv:2002048 LA - en ID - COCV_2002__8__489_0 ER -
%0 Journal Article %A Conca, Carlos %A Vanninathan, M. %T Fourier approach to homogenization problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 489-511 %V 8 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002048/ %R 10.1051/cocv:2002048 %G en %F COCV_2002__8__489_0
Conca, Carlos; Vanninathan, M. Fourier approach to homogenization problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 489-511. doi: 10.1051/cocv:2002048
[1] and, Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim. 18 (1988) 1-38. | Zbl | MR
[2] , Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | Zbl | MR
[3] and, Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. | Zbl | MR
[4] and, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 (1997) 343-379. | Zbl | MR
[5] and, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal. 135 (1996) 197-257. | Zbl | MR
[6] and, Analyse asymptotique spectrale de l'équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 293-298. | Zbl
[7] and, Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 557-562. | Zbl
[8] , and, Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978). | Zbl | MR
[9] , Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys. 52 (1928) 555-600. | JFM
[10] and, Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl. 4 (1977) 137-159. | Zbl | MR
[11] and, Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1043-1048. | Zbl
[12] and, Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997). | Zbl | MR
[13] , and, Numerical experiments with the Bloch-Floquet approach in homogenization (to appear). | Zbl | MR
[14] , and, Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press). | Zbl | MR
[15] , and, Bloch Approximation in bounded domains. Preprint (2002). | MR
[16] , and, Application of Bloch decomposition in wave propagation problems (in preparation).
[17] , and, Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995). | Zbl | MR
[18] , and, Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal. 6 (1993) 365-389. | Zbl | MR
[19] ,, and, Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994). | Zbl
[20] and, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639-1659. | Zbl | MR
[21] and, On uniform -estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 499-517. | Zbl | MR
[22] and, A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg. 69 (1988) 215-242. | Zbl | MR
[23] , An Introduction to Convergence. Birkhäuser, Boston (1993). | Zbl | MR
[24] and, Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math. 56 (1996) 68-88. | Zbl | MR
[25] , Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 2 12 (1883) 47-89. | MR | JFM | Numdam
[26] , Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR 73 (1950) 1117-1120. | MR
[27] , Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990-1991. École Polytechnique, Palaiseau (1991). | Zbl | Numdam
[28] , Microlocal defect measures. Comm. Partial Differential Equation 16 (1991) 1761-1794. | Zbl | MR
[29] ,, and, Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math. 50 (1997) 321-377. | Zbl | MR
[30] , Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985). | Zbl | MR
[31] , Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216. | Zbl | MR
[32] and, Sur les mesures de Wigner. Revista Math. Iberoamer. 9 (1993) 553-618. | Zbl | MR
[33] , and, A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys. 35 (1994) 1066-1094. | Zbl | MR
[34] and, An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33. | Zbl
[35] , (1977-78) -Convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes. English translation: Murat and L. Tartar, -Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications 31 (1977). | Zbl
[36] , A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183. | MR
[37] , A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | Zbl | MR
[38] and, Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys. 5 (1964) 1499-1504. | Zbl | MR
[39] , and, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces. Upsekhi Math. Nauk. 44 (1989) 157-158. | Zbl
[40] , Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech. 2 (1987) 105-118. | Zbl
[41] , Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg. 30 (1982) 75-93. | Zbl | MR
[42] and, Methods of Modern Mathematical Physics. I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78). | Zbl | MR
[43] , Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys. 127 (1980). | Zbl
[44] and, Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989). | Zbl
[45] and, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984-1005. | Zbl | MR
[46] , -measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. | Zbl | MR
[47] , Problèmes d'Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat [25].
[48] , Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. | Zbl | MR
[49] , Theory of Bloch waves. J. Anal. Math. 33 (1978) 146-167. | Zbl | MR
Cité par Sources :






