In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control
Keywords: optimal control, sterilization, canned food, water pollution, noise reduction
@article{COCV_2002__8__195_0,
author = {Bermudez, Alfredo},
title = {Some applications of optimal control theory of distributed systems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {195--218},
year = {2002},
publisher = {EDP Sciences},
volume = {8},
doi = {10.1051/cocv:2002057},
mrnumber = {1932950},
zbl = {1066.49024},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002057/}
}
TY - JOUR AU - Bermudez, Alfredo TI - Some applications of optimal control theory of distributed systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 195 EP - 218 VL - 8 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002057/ DO - 10.1051/cocv:2002057 LA - en ID - COCV_2002__8__195_0 ER -
%0 Journal Article %A Bermudez, Alfredo %T Some applications of optimal control theory of distributed systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 195-218 %V 8 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002057/ %R 10.1051/cocv:2002057 %G en %F COCV_2002__8__195_0
Bermudez, Alfredo. Some applications of optimal control theory of distributed systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 195-218. doi: 10.1051/cocv:2002057
[1] and, Modelling and control of natural convection in canned foods. IMA J. Appl. Math. 63 (1999) 246-265. | Zbl
[2] and, Natural algorithms for choosing source locations in active control systems. J. Sound Vibr. 186 (1995) 245-267. | Zbl
[3] Beranek and Ver, Noise and vibration control engineering. Principles and applications. John Wiley and Sons, New York (1992).
[4] , Mathematical techniques for some environmental problems related to water pollution control, in Mathematics, Climate and Environment, edited by J.I. Díaz, J.-L. Lions. Masson, Paris (1993). | Zbl | MR
[5] and, A state constrained optimal control problem related to the sterilization of canned foods. Automatica. The IFAC Journal 30 (1994) 319-329. | Zbl | MR
[6] , and, Un problème de contrôle ponctuel lié à l'emplacement optimal d'émissaires d'évacuation sous-marine. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 515-518. | Zbl
[7] , and, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79-97. | Zbl | MR
[8] and, Optimal control of a Signorini problem. SIAM J. Control Optim. 25 (1987) 576-582. | Zbl | MR
[9] and, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes distribuées sur l'état, in Nonlinear partial differential equations and their applications, edited by H. Brezis and J.-L. Lions. Pitman (1988). | Zbl
[10] , estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. | Zbl | MR
[11] , Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. | Zbl | MR
[12] , Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. | Zbl
[13] , An introduction to Newton type algorithms for nonlinearly constrained optimization problems. Birkhauser-Verlag, Basel, Internat. Ser. Numer. Math. 87 (1989) 1-17. | Zbl | MR
[14] and , PLCBAS User's Guide VERSION 1.1. Computación 1. Universidad de Cantabria, Santander, Spain (1989).
[15] , Basic error estimates for elliptic problems, in Handbook of Numerical Analysys, Vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holand (1991). | Zbl | MR
[16] , On the local behaviour of solutions of degenerate parabolic equatons with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986) 487-535. | Zbl | MR | Numdam
[17] and, Convex analysis and variational problems. North-Holland, Amsterdam (1976). | Zbl | MR
[18] , Contribución al estudio matemático de problemas de simulación y control activo del ruido, Ph. Thesis. Universidade de Santiago de Compostela, Spain (2002).
[19] , A two stage feasible directions algorithm for nonlinear constrained optimization. Math. Programming 36 (1986) 19-38. | Zbl | MR
[20] , A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99 (1998) 121-146. | Zbl | MR
[21] and, Convex analysis and Minimization Algorithms. Springer-Verlag, Berlin, Heildelberg (1993). | Zbl
[22] and, Pontriagin maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints. SIAM J. Control Optim. 33 (1995) 1857-1880. | Zbl | MR
[23] , and, Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968). | Zbl
[24] , Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968). | Zbl | MR
[25] , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | Zbl | MR
[26] and, Active Control of Sound. Academic Press, London (1999).
[27] , Mathematical models in environmental problems. North Holland, Amsterdam (1986). | Zbl | MR
[28] , and, Theoretical and numerical analysis of an optimal control problem related to waste-water treatment. SIAM J. Control Optim. 38 (2000) 1534-1553. | Zbl
[29] and, Sterilization in food technology. Mc Graw Hill, New York (1957).
[30] , and, Simulation of thermal processes in tuna can manufacture. Instituto de Investigaciones Marinas (C.S.I.C.), Vigo, Spain (1989).
[31] , and, A QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization. SIAM J. Control Optim. 26 (1988) 788-810. | Zbl | MR
[32] , Finite element convergence for singular data. Numer. Math. 21 (1973) 317-327. | Zbl | MR
[33] , Contribución a la resolución numérica de modelos para el estudio de la contaminación de aguas. Master thesis. Dept. Matemática Aplicada. Univ. Santiago de Compostela, Spain (1992).
Cité par Sources :





