We study the integral representation properties of limits of sequences of integral functionals like under nonstandard growth conditions of -type: namely, we assume that
Keywords: integral representation, $\Gamma $-convergence, nonstandard growth conditions
@article{COCV_2002__7__495_0,
author = {Coscia, Alessandra and Mucci, Domenico},
title = {Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {495--519},
year = {2002},
publisher = {EDP Sciences},
volume = {7},
doi = {10.1051/cocv:2002065},
mrnumber = {1925039},
zbl = {1036.49022},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002065/}
}
TY - JOUR
AU - Coscia, Alessandra
AU - Mucci, Domenico
TI - Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
SP - 495
EP - 519
VL - 7
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv:2002065/
DO - 10.1051/cocv:2002065
LA - en
ID - COCV_2002__7__495_0
ER -
%0 Journal Article
%A Coscia, Alessandra
%A Mucci, Domenico
%T Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 495-519
%V 7
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2002065/
%R 10.1051/cocv:2002065
%G en
%F COCV_2002__7__495_0
Coscia, Alessandra; Mucci, Domenico. Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 495-519. doi: 10.1051/cocv:2002065
[1] , and, Relaxation of convex functionals: The gap phenomenon. Ann. Inst. H. Poincaré (2003). | Zbl | Numdam
[2] and, Regularity results for a class of functionals with non standard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. | Zbl | MR
[3] and, Regularity results for a class of quasiconvex functionals with non standard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 XXX (2001) 311-339. | Zbl | MR | Numdam | EuDML
[4] , Sobolev spaces. Academic Press, New York (1975). | Zbl | MR
[5] , The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differential Equations 33 (1998) 1653-1663. | Zbl | MR
[6] , and, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Ser. A 128 (1988) 463-479. | Zbl | MR
[7] , Semicontinuity, relaxation and integral representation in the calculus of variations. Longman, Harlow, Pitman Res. Notes in Math. 207 (1989). | Zbl | MR
[8] and, A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl. 64 (1985) 337-361. | Zbl | MR
[9] and, Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985) 515-532. | Zbl | MR
[10] and, Homogenization of multiple integrals. Oxford University Press, Oxford, Oxford Lecture Ser. in Maths. and its Appl. 12 (1998). | Zbl | MR
[11] and, Some properties of -limits of integral functionals. Ann. Mat. Pura Appl. (iv) 122 (1979) 1-60. | Zbl | MR
[12] and, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. | Zbl | MR | EuDML
[13] and, Hölder continuity of the gradient of -harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. | Zbl | MR
[14] , An introduction to -convergence. Birkäuser, Boston, Prog. Nonlinear Differential Equations Appl. 8 (1993). | Zbl | MR
[15] and, A general theory for variational functionals. Quaderno S.N.S. Pisa, Topics in Funct. Anal. (1982). | Zbl | MR
[16] , Sulla convergenza di alcune successioni di integrali di tipo dell'area. Rend. Mat. Univ. Roma 8 (1975) 277-294. | Zbl
[17] and, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975) 842-850. | Zbl | MR
[18] and, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 61-99. | Zbl | Numdam | EuDML
[19] and, Convex analysis and variational problems. North Holland, Amsterdam (1978). | Zbl | MR
[20] and, A class of De Giorgi type and Hölder continuity. Nonlinear Anal. T.M.A. 36 (1999) 295-318. | Zbl | MR
[21] , On the convergence of integral functionals depending on vector-valued functions. Ricerche Mat. 32 (1983) 321-339. | Zbl | MR
[22] , Regularity and existence of solutions of elliptic equations with -growth conditions. J. Differential Equations 90 (1991) 1-30. | Zbl | MR
[23] , Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90 (1996) 161-181. | Zbl | MR
[24] , Quasi-convexity and semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. | Zbl | MR
[25] and, Mathematical modelling of electrorheological fluids. Cont. Mech. Therm. 13 (2001) 59-78. | Zbl
[26] , Electrorheological fluids: Modeling and mathematical theory. Springer, Berlin, Lecture Notes in Math. 1748 (2000). | Zbl | MR
[27] , On the passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math. 76 (1993) 427-459. | Zbl | MR
[28] , On Lavrentiev's phenomenon. Russian J. Math. Phys. 3 (1995) 249-269. | Zbl
[29] , On some variational problems. Russian J. Math. Phys. 5 (1997) 105-116. | Zbl | MR
[30] , Meyers type estimates for solving the non linear Stokes system. Differential Equations 33 (1997) 107-114. | Zbl | MR
[31] , and, Homogenization of differential operators and integral functionals. Springer, Berlin (1994). | Zbl | MR
Cité par Sources :





