Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Next article
Noumi, Masatoshi; Umeda, T˘ru; Wakayama, Masato
Dual pairs, spherical harmonics and a Capelli identity in quantum group theory. Compositio Mathematica, 104 no. 3 (1996), p. 227-277
Full text djvu | pdf | Reviews MR 1424556 | Zbl 0930.17012

stable URL: http://www.numdam.org/item?id=CM_1996__104_3_227_0

Bibliography

[Ab] Abe, E.: HopfAlgebras, Cambridge Math. Tracts 74, Cambridge Univ. Press, 1980.  MR 594432 |  Zbl 0476.16008
[B] Bergman, G.M.: The diamond lemma for ring theory, Adv. Math. 29 (1978) 178-218.  MR 506890 |  Zbl 0377.16013
[D] Drinfel'd, V.G.: Quantum groups, in Proc. Int. Cong. Math. Berkeley, 1986, pp. 798-820.  MR 934283 |  Zbl 0667.16003
[F] Fischer, E.: ▄ber algebraische Modulsysteme und lineare homogene partielle Differentialgleichungen mit konstaten Koeffizienten, J. Reine Angew. Math. 140 (1911) 48-81.  JFM 42.0148.01
[GK] Gavrilik, A.M. and Klimyk, A.U.: q-Deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys. 21 (1991) 215-220.  MR 1102131 |  Zbl 0735.17020
[Ha] Hayashi, T.: Q-analogues of Clifford and Weyl algebras - spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990) 129-144.
Article |  MR 1036118 |  Zbl 0701.17008
[HiW] Hibi, T. and Wakayama, M.: A q-analogue of Capelli's identity for GL q (2), Adv. in Math. (to appear).  Zbl 0937.17009
[H1] Howe, R.: Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989) 539-570; Erratum, Trans. Amer. Math. Soc. 318 (1990) p. 823.  MR 986027 |  Zbl 0726.15025
[H2] Howe, R.: Dual pairs in physics: Harmonic oscillators, photons, electrons, and singletons, in Lectures in Applied Math. vol. 21, 1985, pp. 179-207.  MR 789290 |  Zbl 0558.22018
[HU] Howe, R. and Umeda, T.: The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991) 565-619.  MR 1116239 |  Zbl 0733.20019
[Ja] Jackson, F.H.: On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh 46 (1908) 253-281.
[J1] Jimbo, M.: A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63-69.  MR 797001 |  Zbl 0587.17004
[J2] Jimbo, M.: A q-analogue of U(gt(N + 1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986) 247-252.  MR 841713 |  Zbl 0602.17005
[Na1] Nazarov, M.L.: Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21 (1991) 123-131.  MR 1093523 |  Zbl 0722.17004
[Na2] Nazarov, M.L.: private communication.
[N1] Noumi, M.: A remark on semisimple elements in Uq (sl(2, C)), Combinatorial Aspects in Representation Theory and Geometry, RIMS K˘kyűroku 765 (1991) 71-78.
[N2] Noumi, M.: A realization of Macdonald's symmetric polynomials on quantum homogeneous spaces, in Proceedings of the 21st International Conference on Differential Geometric Methods in Theoretical Physics, Tianjin China, 1992.
[N3] Noumi, M.: Quantum Grassmannians and q-hypergeometric series, CWI Quarterly 5 (1992) 293-307.  MR 1213744 |  Zbl 0782.33015
[N4] Noumi, M.: Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, to appear, Adv. Math..
arXiv |  MR 1413836 |  Zbl 0874.33011
[NUW1] Noumi, M., Umeda, T. and Wakayama, M.: A quantum analogue of the Capelli identity and an elementary differential calculas on GLq (n) Duke Math. J. 76 (1994) 567-594.
Article |  MR 1302325 |  Zbl 0835.17013
[NUW2] Noumi, M., Umeda, T. and Wakayama, M.: A quantum dual pair (sl2, On) and the associated Capelli identity, Lett. Math. Phys. 34 (1995) 1-8.  MR 1334029 |  Zbl 0842.17020
[O] Olshanski, G.I.: Twisted Yangians and infinite-dimensional classical Lie algebras, in Quantum Groups, Lecture Notes in Math. 1510, Springer Verlag (1992), pp. 103-120.  MR 1183482 |  Zbl 0780.17025
[RTF] Reshetikhin, N. Yu., Takhtadzyan, L.A. and Faddeev. L.D.: Quantization of the Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193-225.  MR 1015339 |  Zbl 0715.17015
[U] Umeda, T.: Notes on almost homogeneity, preprint (1993).
[UW] Umeda, T. and Wakayama, M.: Another look at the differential operators on quantum matrix spaces and its applications, in preparation.  Zbl 0957.17023
[Wy] Weyl, H.: The Classical Groups, their Invariants and Representations, Princeton Univ. Press, 1946.  MR 1488158 |  Zbl 1024.20501
Copyright Cellule MathDoc 2014 | Credit | Site Map