@article{CM_1996__101_2_115_0,
author = {Sanderson, Yasmine B.},
title = {Dimensions of {Demazure} modules for rank two affine {Lie} algebras},
journal = {Compositio Mathematica},
pages = {115--131},
year = {1996},
publisher = {Kluwer Academic Publishers},
volume = {101},
number = {2},
mrnumber = {1389364},
zbl = {0873.17021},
language = {en},
url = {https://www.numdam.org/item/CM_1996__101_2_115_0/}
}
TY - JOUR AU - Sanderson, Yasmine B. TI - Dimensions of Demazure modules for rank two affine Lie algebras JO - Compositio Mathematica PY - 1996 SP - 115 EP - 131 VL - 101 IS - 2 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1996__101_2_115_0/ LA - en ID - CM_1996__101_2_115_0 ER -
Sanderson, Yasmine B. Dimensions of Demazure modules for rank two affine Lie algebras. Compositio Mathematica, Tome 101 (1996) no. 2, pp. 115-131. https://www.numdam.org/item/CM_1996__101_2_115_0/
[D] : Une nouvelle formule des caractères, Bull. Soc. Math. France, 2e série 98, (1974), 163-172. | Zbl | MR
[Ka] : Infinite-dimensional Lie-algebras, Cambridge University Press, Cambridge, 1985. | Zbl | MR
[Ku] : Demazure character formula in arbitrary Kac-Moody setting. Invent. Math. 89 (1987), 395-423. | Zbl | MR
[LS] and : Standard monomial theory for SL2, Infinite-dimensional Lie algebras and groups (Luminy- Marseille 1988), World Sci. Publishing, Teaneck, NJ,1989, pp. 178-234. | Zbl | MR
[LW] and : The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77 (1984), 199-290. | Zbl | MR
[L1] : A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346. | Zbl | MR
[L2] : Paths and root operators in representation theory. Ann. Math., to appear. | Zbl | MR
[M] : Formule de Demazure-Weyl et généralisation du théorème de Borel-Weil-Bott, C.R. Acad. Sc. Paris, Série I, 303 no. 9, (1986), 391-394. | Zbl | MR






