Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article
Stroeker, R. J.
On the sum of consecutive cubes being a perfect square. Compositio Mathematica, 97 no. 1-2 (1995), p. 295-307
Full text djvu | pdf | Reviews MR 1355130 | Zbl 0837.11012

stable URL: http://www.numdam.org/item?id=CM_1995__97_1-2_295_0

Bibliography

1 Birch, B.J. and Swinnerton-Dyer, H.P.F.: Notes on elliptic curves I, Crelle 212, Heft 1/2 (1963) 7-25.
Article |  MR 146143 |  Zbl 0118.27601
2 Bremner, A.: On the Equation Y2 = X(X2 + p), in: " Number Theory and Applications " (R. A. Mollin, ed.), Kluwer, Dordrecht, 1989,3-23.  MR 1123066 |  Zbl 0689.14010
3 Bremner, A. and Cassels, J.W.S.: On the Equation Y2 = X(X2 + p), Math. Comp. 42 (1984) 257-264.  MR 726003 |  Zbl 0531.10014
4 Cassels, J.W.S.: A Diophantine Equation, Glasgow Math. J. 27 (1985) 11-18.  MR 819824 |  Zbl 0576.10010
5 Cremona, J.E.: " Algorithms for Modular Elliptic Curves", Cambridge University Press, 1992.  MR 1201151 |  Zbl 0758.14042
6 David, S.: Minorations de formes linéaires de logarithmes elliptiques, Publ. Math. de l'Un. Pierre et Marie Curie no. 106, Problèmes diophantiens 1991-1992, exposé no. 3.
7 Dickson, L.E.: " History of the Theory of Numbers", Vol. II: " Diophantine Analysis", Chelsea Publ. Co. 1971 (first published in 1919 by the Carnegie Institute of Washington, nr. 256).  MR 245500 |  JFM 47.0100.04
8 Gebel, J., Pethö, A. and Zimmer, H.G.: Computing Integral Points on Elliptic Curves, Acta Arithm., 68 (2) (1994) 171-192.
Article |  MR 1305199 |  Zbl 0816.11019
9 Knapp, Anthony W.: " Elliptic Curves", Math. Notes 40, Princeton University Press, 1992.  MR 1193029 |  Zbl 0804.14013
10 Koblitz, N.: " Introduction to Elliptic Curves and Modular Forms", Springer-Verlag, New York etc., 1984.  MR 766911 |  Zbl 0553.10019
11 Silverman, Joseph H.: " The Arithmetic of Elliptic Curves", GTM 106, Springer-Verlag, New York etc., 1986.  MR 817210 |  Zbl 0585.14026
12 Silverman, J.H.: Computing Heights on Elliptic Curves, Math. Comp. 51 (1988) 339-358.  MR 942161 |  Zbl 0656.14016
13 Silverman, J.H.: The difference between the Weil height and the canonical height on elliptic curves, Mat. Comp. 55 (1990) 723-743.  MR 1035944 |  Zbl 0729.14026
14 Silverman, Joseph H. and Tate, John: " Rational Points on Elliptic Curves", UTM, Springer-Verlag, New York etc., 1992.  MR 1171452 |  Zbl 0752.14034
15 Stroeker, Roel J. and Top, Jaap: On the Equation Y2 = (X + p)(X2 + p2), Rocky Mountain J. Math. 24 (3) (1994) 1135-1161.  MR 1307595 |  Zbl 0810.11038
16 Stroeker, R.J. and Tzanakis, N.: On the Application of Skolem's p-adic Method to the solution of Thue Equations, J. Number Th. 29 (2) (1988) 166-195.  MR 945593 |  Zbl 0674.10012
17 Stroeker, R.J. and Tzanakis, N.: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arithm. 67 (2) (1994) 177-196.
Article |  MR 1291875 |  Zbl 0805.11026
18 Stroeker, Roel J. and De Weger, Benjamin M. M.: On Elliptic Diophantine Equations that Defy Thue's Method - The Case of the Ochoa Curve, Experimental Math., to appear.
Article |  Zbl 0824.11012
19 Tate, J.: Variation of the canonical height of a point depending on a parameter, American J. Math. 105 (1983) 287-294.  MR 692114 |  Zbl 0618.14019
20 Tzanakis, N. and De Weger, B.M.M.: On the Practical Solution of the Thue Equation, J. Number Th. 31 (2) (1989) 99-132.  MR 987566 |  Zbl 0657.10014
21 De Weger, B.M.M.: " Algorithms for Diophantine Equations", CWI Tract 65, Stichting Mathematisch centrum, Amsterdam 1989.  MR 1026936 |  Zbl 0687.10013
22 Zagier, D.: Large Integral Points on Elliptic Curves, Math. Comp. 48 (1987) 425-436.  MR 866125 |  Zbl 0611.10008
Copyright Cellule MathDoc 2014 | Credit | Site Map