@article{CM_1993__88_3_251_0,
author = {Pink, Richard},
title = {Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime},
journal = {Compositio Mathematica},
pages = {251--264},
year = {1993},
publisher = {Kluwer Academic Publishers},
volume = {88},
number = {3},
mrnumber = {1241950},
zbl = {0820.20055},
language = {en},
url = {https://www.numdam.org/item/CM_1993__88_3_251_0/}
}
TY - JOUR
AU - Pink, Richard
TI - Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime
JO - Compositio Mathematica
PY - 1993
SP - 251
EP - 264
VL - 88
IS - 3
PB - Kluwer Academic Publishers
UR - https://www.numdam.org/item/CM_1993__88_3_251_0/
LA - en
ID - CM_1993__88_3_251_0
ER -
%0 Journal Article
%A Pink, Richard
%T Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime
%J Compositio Mathematica
%D 1993
%P 251-264
%V 88
%N 3
%I Kluwer Academic Publishers
%U https://www.numdam.org/item/CM_1993__88_3_251_0/
%G en
%F CM_1993__88_3_251_0
Pink, Richard. Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime. Compositio Mathematica, Tome 88 (1993) no. 3, pp. 251-264. https://www.numdam.org/item/CM_1993__88_3_251_0/
1 , Subgroups of the full linear group over a semilocal ring that contain the group of diagonal matrices, Tr. Mat. Inst. Akad. Nauk SSSR, 148 (1978), 43-57. | Zbl | MR
2 , , Modular konstruierte unverzweigte abelsche p-Erweiterungen von Q(ζ p) und die Struktur ihrer Galoisgruppe, Math. Nachr. 159 (1992) 83-99. | Zbl
3 , Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965). | Zbl | MR | Numdam
4 , Représentations l-adiques, Compos. Math. 71 (1989), 303-362. | Zbl | MR | Numdam
5 , Description of subgroups of the full linear group over a semilocal ring that contain the group of diagonal matrices, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Nauk SSSR, 86 (1979), 30-34- Journal of Soviet Mathematics 17, No. 4 (1981), 1960-1963. | Zbl | MR





