@article{CM_1993__86_2_189_0,
author = {Hecht, Henryk and Taylor, Joseph L.},
title = {A comparison theorem for $\mathfrak {n}$-homology},
journal = {Compositio Mathematica},
pages = {189--207},
year = {1993},
publisher = {Kluwer Academic Publishers},
volume = {86},
number = {2},
mrnumber = {1214457},
zbl = {0784.22006},
language = {en},
url = {https://www.numdam.org/item/CM_1993__86_2_189_0/}
}
TY - JOUR
AU - Hecht, Henryk
AU - Taylor, Joseph L.
TI - A comparison theorem for $\mathfrak {n}$-homology
JO - Compositio Mathematica
PY - 1993
SP - 189
EP - 207
VL - 86
IS - 2
PB - Kluwer Academic Publishers
UR - https://www.numdam.org/item/CM_1993__86_2_189_0/
LA - en
ID - CM_1993__86_2_189_0
ER -
Hecht, Henryk; Taylor, Joseph L. A comparison theorem for $\mathfrak {n}$-homology. Compositio Mathematica, Tome 86 (1993) no. 2, pp. 189-207. https://www.numdam.org/item/CM_1993__86_2_189_0/
1 and , Localization de g-modules, C.R. Acad. Sci. Paris 292 (1981), 15-18. | Zbl | MR
2 and , A generalization of Casselman's submodule theorem, Representation Theory of Reductive Groups, Progress in Mathematics, vol. 40, Birkhäuser, Boston, 1983. | Zbl
3 et al., Algebraic D-modules, Perspectives in Mathematics, vol. 2, Birkhäuser, Boston, 1987. | Zbl
4 , Jaquet modules for real semisimple Lie groups, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, pp. 557-563. | Zbl | MR
5 , Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math., vol. 41, (1989), 385-438. | Zbl | MR
6 and , Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), 869-930. | Zbl | MR
7 and , The n-cohomology of representations with an infinitesimal character, Compositio Math. 31 (1975), 219-227. | Zbl | MR | Numdam
8 , Équations Differentielles á Points Singuliers Réguliers, Lecture Notes in Mathematics 163, Springer Verlag, Berlin, 1973. | Zbl | MR
9 and , Cohomological dimension of localization functor, Proc. Amer. Math. Soc., vol. 108, (1990), 249-254. | Zbl | MR
10 , , , and , Localization and standard modules for real semisimple Lie groups I: The duality theorem, Inventiones Math. 90 (1987), 297-332. | Zbl | MR | EuDML
11 and , Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983), 49-151. | Zbl | MR
12 and , On asymptotics and n-homology of Harish-Chandra modules, Journal für die reine und angewandte Mathematik 343 (1983), 169-173. | Zbl | MR | EuDML
13 and , Analytic localization of group representations, Advances in Mathematics 79 (1990), 139-212. | Zbl | MR
14 , The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 332-357. | Zbl | MR
15 , Closure Relations for Orbits on Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups, Advanced Studies in Pure Mathematics, vol. 14, 1988 pp. 541-559. | Zbl | MR
16 , Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hirosh. Math. Journal 18 (1988), 59-67. | Zbl | MR
17 , Asymptotic behavior of matrix coefficients of the discrete series, Duke Math. J. 44 (1977), 59-88. | Zbl
18 , Localization and Representation Theory of Reductive Lie Groups (mimeographed notes).
19 , Boundary value problems for group invariant differential equations, Elie Cartan et les mathématiques d'ajourd'hui, Astérique, 1983. | Zbl | Numdam
20 and , Globalization of Harish-Chandra modules, Bull. Amer. Math. Soc. 17 (1987), 117-120. | Zbl | MR
21 , Géométrie algébraique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42. | Zbl | MR | Numdam | EuDML
22 , Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lusztig conjectures in the integral case, Inventiones Math. 71 (1983), 381-417. | Zbl | MR | EuDML
23 , Asymptotic expansion of generalized matrix entries of representations of real reductive groups, Lie group representations I, (Proceedings, University of Maryland 1982-1983), Lecture Notes in Mathematics 1024, Springer Verlag, New York, 1983. | Zbl | MR





