Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article
Opdam, E. M.
Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compositio Mathematica, 85 no. 3 (1993), p. 333-373
Full text djvu | pdf | Reviews MR 1214452 | Zbl 0778.33009

stable URL: http://www.numdam.org/item?id=CM_1993__85_3_333_0

Bibliography

[1] Bott, R.: An application of the Morse theory to the topology of Lie groups. Bull Soc. Math. France 84 (1958), 251-282.
Numdam |  MR 87035 |  Zbl 0073.40001
[2] Bourbaki, N.: Algèbre, Chapitre 9. Hermann, Paris, 1959.  Zbl 0102.25503
[3] Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres 4, 5 et 6. Hermann, Paris, 1968.  MR 240238
[4] Brieskorn, E.: Die fundamentalgruppe des Raumes der regulären orbits einer komplexen spiegelungsgruppe. Inv. Math. 12 (1971), 57-61.  MR 293615 |  Zbl 0204.56502
[5] Curtis, C.W., Iwahori, N. and Kilmoyer, R.W.: Hecke algebras and the characters of parabolic type of finite groups with BN-pairs. Publ. Math. IHES 40 (1971), 81-116.
Numdam |  MR 347996 |  Zbl 0254.20004
[6] Deligne, P.: Equations Differentielles à Points Singulier Regulier. LNM 163, Springer-Verlag (1970).  MR 417174 |  Zbl 0244.14004
[7] Deligne, P.: Les immeubles des groupes de tresses généraliser. Inv. Math. 17 (1972), 273-302.  MR 422673 |  Zbl 0238.20034
[8] Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311(1) (1989).  MR 951883 |  Zbl 0652.33004
[9] Dunkl, C.F.: Harmonic polynomials and peak sets of reflection groups. Geom. Dedicata 32 (1989), 157-171.  MR 1029672 |  Zbl 0685.33012
[10] Dunkl, C.F.: Operators Commuting with Coxeter Group Actions on Polynomials, in D. Stanton (ed.) Invariant Theory and Tableaux. Springer-Verlag (1990).  MR 1035491 |  Zbl 0719.33008
[11] Dunkl, C.F.: Integral kernels with reflection group invariance. Canad. J. Math. (to appear).  MR 1145585 |  Zbl 0827.33010
[12] Dunkl, C.F.: Hankel transforms associated to finite reflection groups (to appear).  MR 1199124
[13] Gyoja, A. and Uno, K.: On the semisimplicity of Hecke algebras. J. Math Soc. Japan 41(1) (1989).
Article |  MR 972165 |  Zbl 0647.20038
[14] Harish-Chandra: Spherical functions on a semisimple Lie group I. Amer. J. Math. 80 (1958), 241-310.  MR 94407 |  Zbl 0093.12801
[15] Harish-Chandra: Spherical functions on a semisimple Lie group II. Amer. J. Math. 80 (1958), 553-613.  MR 101279 |  Zbl 0093.12801
[16] Heckman, G.J.: Root systems and hypergeometric functions II. Compositio Math. 64 (1987), 353-374.
Numdam |  MR 918417 |  Zbl 0656.17007
[17] Heckman, G.J.: A remark on the Dunkl differential-difference operators. Proc. of the Bowdoin conference on harmonic analysis on reductive groups, 1989.  Zbl 0749.33005
[18] Heckman, G.J.: An elementary approach to the hypergeometric shift operators of Opdam. Inv. Math. 103 (1991), 341-350.  MR 1085111 |  Zbl 0721.33009
[19] Heckman, G.J. and Opdam, E.M.: Root systems and hypergeometric functions I. Compositio Math. 64 (1987), 329-352.
Numdam |  MR 918416 |  Zbl 0656.17006
[20] Helgason, S.: Groups and Geometric Analysis. Academic Press (1984).  MR 754767 |  Zbl 0543.58001
[21] Katz, N.M.: Nilpotent connections and the monodromy theorem; application of a result of Turrittin. Publ. Math. I.H.E.S. 39 (1970), 355-432.
Numdam |  MR 291177 |  Zbl 0221.14007
[22] Lek, H. v.d.: The homotopy type of complex hyperplane complements. Thesis, Univ. of Nijmegen, 1983.
[23] Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann. 199 (1972), 161-174.  MR 322069 |  Zbl 0286.20062
[24] Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. An. 13 (1982) 988-1007.  MR 674768 |  Zbl 0498.17006
[25] Matsuo, A.: Knizhnik-Zamolodchikov type equations and zonal spherical functions. Res. Inst. Math. Sci. 750, Kyoto University (1991).
[26] Opdam, E.M.: Root systems and hypergeometric functions III. Compositio Math. 67 (1988), 21-49.
Numdam |  MR 949270 |  Zbl 0669.33007
[27] Opdam, E.M.: Root systems and hypergeometric functions IV. Compositio Math. 67 (1988), 191-209.
Numdam |  MR 951750 |  Zbl 0669.33008
[28] Opdam, E.M.: Some applications of hypergeometric shift operators. Inv. Math. 98 (1989), 1-18.  MR 1010152 |  Zbl 0696.33006
[29] Solomon, L.: The orders of finite Chevalley groups. J. Algebra 3 (1966), 376-393.  MR 199275 |  Zbl 0151.02003
[30] Springer, T.A.: Regular elements of finite reflection groups. Inv. Math. 25 (1974), 159-198.  MR 354894 |  Zbl 0287.20043
[31] Stanley, R.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra 49 (1977), 134-148.  MR 460484 |  Zbl 0383.20029
[32] Steinberg, R.: Lecture on Chevalley Groups. Lecture notes, Yale Univ. (1967).  MR 466335
[33] Varadarajan, V.S.: Lie Groups, Lie Algebras and their Representations, G.T.M., Springer-Verlag (1974).  MR 376938 |  Zbl 0955.22500
[34] Walter, W.: Gewöhnliche Differentialgleichungen. Heidelberger Taschenbücher, Springer-Verlag (1972).  MR 404728 |  Zbl 0247.34001
[35] Yano, T. and Sekiguchi, J.: The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems I. Tokyo J. Math. 2 (1979).  MR 560265 |  Zbl 0449.58025
Copyright Cellule MathDoc 2014 | Credit | Site Map