@article{CM_1988__67_1_89_0,
author = {Wolak, Robert},
title = {Foliations admitting transverse systems of differential equations},
journal = {Compositio Mathematica},
pages = {89--101},
year = {1988},
publisher = {Kluwer Academic Publishers},
volume = {67},
number = {1},
mrnumber = {949272},
zbl = {0649.57027},
language = {en},
url = {https://www.numdam.org/item/CM_1988__67_1_89_0/}
}
Wolak, Robert. Foliations admitting transverse systems of differential equations. Compositio Mathematica, Tome 67 (1988) no. 1, pp. 89-101. https://www.numdam.org/item/CM_1988__67_1_89_0/
1 and : De Rham decomposition theorem for foliated manifolds. Ann. Inst. Fourier 33 (1983) 183-198. | Zbl | MR | Numdam
2 and : Ehresmann connection for foliations. Indiana Un. Math. J. 33(4) (1984) 597-611. | Zbl | MR
3 Sur les structures transversalement affines des feuilletages de codimension un. Ann. Inst. Fourier 30(1) (1980) 1-29. | Zbl | MR | Numdam
4 Structures transverses affines trivialisables. Publ. IRMA, Strasbourg, Vol. 188, p. 109.
5 : Geodesics of order 2. Prace Mat. 19 (1977) 121-136. | Zbl | MR
6 : A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. A.M.S. 11 (1960) 232-242. | Zbl | MR
7 : Propriétés cohomologiques et propriétés topologiques de feuilletages a connexion transverse projectable. Topology 12 (1973) 317-325. | Zbl | MR
8 : Etude des feuilletages transversalement complets et applications. Ann. Scient. Ec. Norm. Sup. 10 (1977) 289-307. | Zbl | MR | Numdam
9 : Group Analysis of Differential Equations. Academic Press, New York (1982). | Zbl | MR
10 : On V-G-foliations. Suppl. Rend. Circolo Mat. Palermo 6 (1984), 329-341. | Zbl | MR
11 : Normal bundles of foliations of order k. Demons. Math. 18(4) (1985) 977-994. | Zbl | MR
12 : Transverse structures of foliations. Suppl. Rend. Cir. Mat. Palermo 9 (1985) 227-243. | Zbl | MR
13 : Some remarks on V-G-foliations. In: L.A. Cordero (ed.) Proceedings, V-th Colloquium on Differential Geometry, Santiago de Compostela, Spain (1984); Pitman (1985) pp. 276-289. | Zbl | MR






