@article{CM_1988__65_2_171_0,
author = {Kotus, Janina and Klok, Fopke},
title = {A sufficient condition for $\Omega $-stability of vector fields on open manifolds},
journal = {Compositio Mathematica},
pages = {171--176},
year = {1988},
publisher = {Kluwer Academic Publishers},
volume = {65},
number = {2},
zbl = {0659.58030},
mrnumber = {932642},
language = {en},
url = {https://www.numdam.org/item/CM_1988__65_2_171_0/}
}
TY - JOUR AU - Kotus, Janina AU - Klok, Fopke TI - A sufficient condition for $\Omega $-stability of vector fields on open manifolds JO - Compositio Mathematica PY - 1988 SP - 171 EP - 176 VL - 65 IS - 2 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1988__65_2_171_0/ LA - en ID - CM_1988__65_2_171_0 ER -
%0 Journal Article %A Kotus, Janina %A Klok, Fopke %T A sufficient condition for $\Omega $-stability of vector fields on open manifolds %J Compositio Mathematica %D 1988 %P 171-176 %V 65 %N 2 %I Kluwer Academic Publishers %U https://www.numdam.org/item/CM_1988__65_2_171_0/ %G en %F CM_1988__65_2_171_0
Kotus, Janina; Klok, Fopke. A sufficient condition for $\Omega $-stability of vector fields on open manifolds. Compositio Mathematica, Tome 65 (1988) no. 2, pp. 171-176. https://www.numdam.org/item/CM_1988__65_2_171_0/
1 and , Dynamical systems: stability theory and applications, Lecture Notes in Math. 35 (1967). | Zbl | MR
2 , , and , An extension of Peixoto's structural stability theorem to open surfaces with finite genus, Lecture Notes in Math. 1007 (1983) pp. 60-87. | Zbl
3 , Absolutely Ω-stable diffeomorphisms, Topology 11 (1972) 195-197. | Zbl
4 , Ω-stability of plane vector fields, Bol. Soc. Bras. Mat. 12(1) (1981) 21-28. | Zbl
5 , , Global structural stability of flows on open surfaces, Mem. Amer. Math. Soc. 37(261) (1982). | Zbl | MR
6 , Ω = Per for generic vector fields on some open surfaces, Demonstratio Mathematica XVIII(1) (1985) 325-340. | Zbl
7 and , Introducao aos sistemas dinamicos, Projéto Euclides, Ed. Edgard Blucher (1978).
8 and , Vector fields with no wandering points, Amer. J. Math. 98 (1976) 415-425. | Zbl | MR






