@article{CM_1985__55_2_209_0,
author = {Hayes, David R.},
title = {Stickelberger elements in function fields},
journal = {Compositio Mathematica},
pages = {209--239},
year = {1985},
publisher = {Martinus Nijhoff Publishers},
volume = {55},
number = {2},
mrnumber = {795715},
zbl = {0569.12008},
language = {en},
url = {https://www.numdam.org/item/CM_1985__55_2_209_0/}
}
Hayes, David R. Stickelberger elements in function fields. Compositio Mathematica, Tome 55 (1985) no. 2, pp. 209-239. https://www.numdam.org/item/CM_1985__55_2_209_0/
[1] : B-adic L-functions and Iwasawa's theory. A. Frölich (ed.), Algebraic Number Fields. London: Academic Press (1977) 269-353. | Zbl | MR
[2] : Elliptic Modules (Russian). Math. Sbornik 94 (1974) 594-627 = Math. USSR Sbornik 23 (1974) 561-592. | Zbl | MR
[3] and : The class number of cyclotomic function fields: J. Number Theory 13 (1981) 363-375. | Zbl | MR
[4] and : Units and class groups in cyclotomic functions fields. J. Number Theory 14 (1982) 156-184. | Zbl | MR
[5] and : Distributions on Rational Function Fields. Math. Annalen 256 (1981) 549-60. | Zbl | MR
[6] : The Γ-ideal and special zeta values, Duke Journal (1980) 345-364. | Zbl
[7] : On a new type of L-function for algebraic curves over finite fields. Pacific Journal 105 (1983) 143-181. | Zbl | MR
[8] : The annihilation of divisor classes in abelian extensions of the rational function field. Séminaire de Théorie des Nombres(Bordeaux 1980-81), exposé no. 3. | Zbl
[9] : Explicit class field theory for rational function fields. Trans. Amer. Math. Soc. 189 (1974) 77-91. | Zbl | MR
[10] : Explicit class field theory in global function fields. G.C. Rota (ed.), Studies in Algebra and Number Theory. New York: Academic Press (1979) 173-217. | Zbl | MR
[11] : Analytic class number formulas in global function fields, Inventiones Math. 65 (1981) 49-69. | Zbl | MR
[12] : Elliptic units in function fields, in Proc. of a Conference on Modern Developments Related to Fermat's Last Theorem, D. Goldfeld ed., Birkhauser, Boston (1982). | Zbl | MR
[13] : L-functions at s = 1. IV. First derivatives at s = 0. Advances in Math. 35 (1980) 197-235. | Zbl | MR
[14] : Les conjectures de Stark sur les functions L d'Artin en s = 0, Birkhauser, Boston (1984). | Zbl | MR
[15] : Brumer-Stark-Stickelberger, Séminaire de Théorie des Numbres, Université de Bordeaux (1980-81), exposé no. 24. | Zbl | MR
[16] : On Stark's conjectures on the behavior of L(s, χ) at s = 0. Jour. Fac. Science, Univ. of Tokyo, 28 (1982), 963-978. | Zbl





