@article{CM_1981__44_1-3_29_0,
author = {de Bartolomeis, Paolo and Tomassini, Giuseppe},
title = {Traces of pluriharmonic functions},
journal = {Compositio Mathematica},
pages = {29--39},
year = {1981},
publisher = {Sijthoff et Noordhoff International Publishers},
volume = {44},
number = {1-3},
mrnumber = {662454},
zbl = {0484.32007},
language = {en},
url = {https://www.numdam.org/item/CM_1981__44_1-3_29_0/}
}
TY - JOUR AU - de Bartolomeis, Paolo AU - Tomassini, Giuseppe TI - Traces of pluriharmonic functions JO - Compositio Mathematica PY - 1981 SP - 29 EP - 39 VL - 44 IS - 1-3 PB - Sijthoff et Noordhoff International Publishers UR - https://www.numdam.org/item/CM_1981__44_1-3_29_0/ LA - en ID - CM_1981__44_1-3_29_0 ER -
de Bartolomeis, Paolo; Tomassini, Giuseppe. Traces of pluriharmonic functions. Compositio Mathematica, Tome 44 (1981) no. 1-3, pp. 29-39. https://www.numdam.org/item/CM_1981__44_1-3_29_0/
[1] : Caractérisation locale par des opérateurs differentiels des restrictions à la sphère de Cn des fonctions pluriharmoniques C.R.A.S. (1977) A284 1029-1031. | Zbl | MR
[2] : (∂∂)b and the real part of CR functions Indiana Univ. Math. J. (1980) 29 3 333-340. | Zbl
[3] , : Pluriharmonic boundary values Tohoku Math. (1974) 26 505-511. | Zbl | MR
[4] : Functions pluriharmonic on manifolds Math. U.S.S.R. Isvestija (1978) 12 439-447. | Zbl
[5] , : Traces of pluriharmonic functions Analytic Functions Kozubnik 1979 Lecture Notes in Math. 798 Springer (1980) 10-17. | Zbl | MR
[6] , : On the extension of holomorphic functions from the boundary of a complex manifold Ann. of Math. (1965) 81 451-473. | Zbl | MR
[7] : Fonctions pluriharmoniques et solution fondamentale d'un opérateur du 4e ordre Bull. Sc. Math. 2s. (1977) 101 305-317. | Zbl | MR
[8] , : Valeurs au bord des formes holomorphes Several Complex Variables, Proceedings of International Conferences, Cortona Italy 1976- 1977 222-245 Scuola Normale Superiore, Pisa (1978). | Zbl | MR
[9] , : Boundary values of Dolbeault Cohomology classes and a generalized Bochner-Hartogs Theorem Abh. Math. Sem. Univ. Hamburg (1978) 47 3-24. | Zbl | MR
[10] : Dirichlet problem for n-harmonic functions and related geometrical properties Math. Ann. Bd. (1955) 130 s.202-218. | Zbl | MR






