@article{CM_1981__43_2_225_0,
author = {Yomdin, Yosef},
title = {On the local structure of a generic central set},
journal = {Compositio Mathematica},
pages = {225--238},
year = {1981},
publisher = {Sijthoff et Noordhoff International Publishers},
volume = {43},
number = {2},
mrnumber = {622449},
zbl = {0465.58008},
language = {en},
url = {https://www.numdam.org/item/CM_1981__43_2_225_0/}
}
Yomdin, Yosef. On the local structure of a generic central set. Compositio Mathematica, Tome 43 (1981) no. 2, pp. 225-238. https://www.numdam.org/item/CM_1981__43_2_225_0/
[1] and : Differentiable germs and catastrophes. London Math. Society Lect. Notes series, 17. Cambridge University Press, 1975. | Zbl | MR
[2] : Stability of the cut locus in dimensions less than or equal to six. Inventiones Math., 43 (1977) 199-231. | Zbl | MR
[3] : The structure of the cut locus in dimension less than or equal to six. Compositio Math., 37, 1 (1978) 103-119. | Zbl | MR | Numdam
[4] : Generalized gradients and applications. Trans. Amer. Math. Soc., 205 (1975) 247-262. | Zbl | MR
[5] : On the inverse function theorem. Pacific J. Math., 64 (1976) 97-102. | Zbl | MR
[6] and : Pattern Classification and Scene Analysis. Wiley, 1973. | Zbl
[7] : Structural stability of smooth families of C∞-functions. Doctoral thesis, Universiteit van Amsterdam, 1974.
[8] : Eine geometrische Ungleihung und ihre Anvendung (Die zentrale Menge des Gebites und die Erkennung des Gebites durch sie). In "General Inequalities ", v. 2., edited by E.F. Beckenbach (to appear). | Zbl | MR
[9] and : On topological properties of the central set of a bounded domain in Rm (to appear). | Zbl
[10] : The central function of the boundary of a domain and its differentiable properties (to appear). | Zbl | MR
[11] : Sur le cut-locus d'une varieté plongée. J. Diff. Geom., 6 (1972) 577-586. | Zbl | MR
[12] : Geometric properties of generic differentiable manifolds: in "Geometry and Topology", Proceeding of the III Latin American School of Mathematics, Rio de Janero, 1976, Lecture Notes in Math., 597, 707-774. | Zbl | MR






