@article{CM_1978__37_3_243_0,
author = {Kalton, N. J.},
title = {The three space problem for locally bounded $F$-spaces},
journal = {Compositio Mathematica},
pages = {243--276},
year = {1978},
publisher = {Sijthoff et Noordhoff International Publishers},
volume = {37},
number = {3},
mrnumber = {511744},
zbl = {0395.46003},
language = {en},
url = {https://www.numdam.org/item/CM_1978__37_3_243_0/}
}
TY - JOUR AU - Kalton, N. J. TI - The three space problem for locally bounded $F$-spaces JO - Compositio Mathematica PY - 1978 SP - 243 EP - 276 VL - 37 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - https://www.numdam.org/item/CM_1978__37_3_243_0/ LA - en ID - CM_1978__37_3_243_0 ER -
Kalton, N. J. The three space problem for locally bounded $F$-spaces. Compositio Mathematica, Tome 37 (1978) no. 3, pp. 243-276. https://www.numdam.org/item/CM_1978__37_3_243_0/
[1] : Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18 (1942) No. 10. | Zbl | MR
[2] : A convexity condition in Banach spaces and the strong law of large numbers. Proc. Amer. Math. Soc. 13 (1962) 329-334. | Zbl | MR
[3] : Über Vererbbarkeitseigenschaften in topologischen Vektorräumen, Dissertation, Munich 1974.
[4] , and : On the 'three space problem'. Math. Scand. 36 (1975) 199-210. | Zbl | MR
[5] : On a convexity condition in normed linear spaces. Trans. Amer. Math. Soc. 125 (1966) 114-146. | Zbl | MR
[6] : Orlicz sequence spaces without local convexity (to appear). | Zbl | MR
[7] and : Quotients of Lp(0, 1) for 0 ≤ p < 1 (to appear). | Zbl
[8] and : Bases and basic sequences in F-spaces. Studia Math., 61 (1976) 47-61. | Zbl | MR
[9] : l1 as a quotient space over an uncomplemented line (to appear).
[10] : On certain classes of linear metric spaces. Bull. Acad. Polon. Sci. 5 (1957) 471-473. | Zbl | MR
[11] : Some remarks on the spaces N(L) and N(l). Studia Math. 18 (1959) 1-9. | Zbl | MR
[12] : Some properties of lp, 0 < p < 1. Studia Math. 42 (1972) 109-119. | Zbl | MR
[13] : Convexités dans les espaces vectoriels topologiques generaux, Diss. Math. No. 131, 1976. | Zbl | MR





