@article{BSMF_1988__116_2_171_0,
author = {Szulkin, Andrzej},
title = {Morse theory and existence of periodic solutions of convex hamiltonian systems},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {171--197},
year = {1988},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {116},
number = {2},
doi = {10.24033/bsmf.2094},
mrnumber = {90f:58074},
zbl = {0669.58004},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2094/}
}
TY - JOUR AU - Szulkin, Andrzej TI - Morse theory and existence of periodic solutions of convex hamiltonian systems JO - Bulletin de la Société Mathématique de France PY - 1988 SP - 171 EP - 197 VL - 116 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2094/ DO - 10.24033/bsmf.2094 LA - en ID - BSMF_1988__116_2_171_0 ER -
%0 Journal Article %A Szulkin, Andrzej %T Morse theory and existence of periodic solutions of convex hamiltonian systems %J Bulletin de la Société Mathématique de France %D 1988 %P 171-197 %V 116 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2094/ %R 10.24033/bsmf.2094 %G en %F BSMF_1988__116_2_171_0
Szulkin, Andrzej. Morse theory and existence of periodic solutions of convex hamiltonian systems. Bulletin de la Société Mathématique de France, Tome 116 (1988) no. 2, pp. 171-197. doi: 10.24033/bsmf.2094
[1] and . - Applied Nonlinear Analysis. - New York, Wiley, 1984. | Zbl | MR
[2] , , and . - Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math., t. 38, 1985, p. 253-289. | Zbl | MR
[3] and . - Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl. (4), t. 120, 1979, p. 113-137. | Zbl | MR
[4] . - Morse theory on Banach spaces and its applications to partial differential equations, Chinese Ann. Math. Ser. B, t. 4, 1983, p. 381-399. | Zbl | MR
[5] . - Morse theory and its applications to PDE, [Séminaire de Mathématiques Supérieures] 1983, Université de Montréal, to appear.
[6] and . - Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., t. 33, 1980, p. 103-116. | Zbl | MR
[7] . - Nonconvex minimization problems, Bull. Amer. Math. Soc., t. 1, 1979, p. 443-474. | Zbl | MR
[8] . - Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. Non Linéaire, t. 1, 1984, p. 19-78. | Zbl | MR | Numdam
[9] and . - Periodic solutions with presbribed minimal period for convex autonomous hamiltonian systems, Invent. Math., t. 81, 1985, p. 155-188. | Zbl | MR
[10] and . - On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. | Zbl | MR
[11] and . - Un flot hamiltonien a au moins deux trajectoires fermées sur toute surface d'énergie convexe et bornée, C. R. Acad. Sci. Paris Sér. I Math., t. 301, 1985, p. 161-164. | Zbl | MR
[12] and . - Multiplicité des trajectoires fermées de systèmes hamiltoniens convexes, to appear.
[13] and . - On differentiable functions with isolated critical points, Topology, t. 8, 1969, p. 361-369. | Zbl | MR
[14] . - The topological degree at a critical point of mountain pass type, Proc. Sym. Pure Math., to appear.
[15] , and . - On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl., t. 52, 1975, p. 594-614. | Zbl | MR
[16] . - Differential Manifolds. - Reading, Mass., Addison-Wesley, 1972. | Zbl | MR
[17] and . - La théorie de Morse pour les systèmes hamiltoniens, [Colloque du Ceremade], Hermann, to appear.
[18] and . - On the generalized Morse lemma, Preprint, Université Catholique de Louvain, 1985. | MR
[19] . - Inequalities of critical point theory, Bull. Amer. Math. Soc., t. 64, 1958, p. 1-30. | Zbl | MR
[20] . - Variational methods for nonlinear eigenvalue problems, [Proc. Sym. on Eigenvalues of Nonlinear Problems], pp. 143-195. - Rome, Edizioni Cremonese, 1974. | MR
[21] . - Periodic solutions of Hamiltonian systems : a survey, SIAM, J. Math. Anal., t. 13, 1982, p. 343-352. | Zbl | MR
[22] . - Critical point theory in Hilbert space under regular boundary conditions, J. Math. Anal. Appl., t. 36, 1971, p. 377-431. | Zbl | MR
[23] . - Morse theory in Hilbert space, Rocky Moutain, J. Math., t. 3, 1973, p. 251-274. | Zbl | MR
[24] . - Algebraic Topology. - New York, NcGraw-Hill, 1966. | Zbl | MR
[25] . - Une théorie de Morse pour les systèmes hamiltoniens étoilés, Thesis, Université Paris-Dauphine, 1985. | MR
Cité par Sources :






