@article{BSMF_1988__116_2_133_0,
author = {Derdzi\'nski, Andrzej},
title = {Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {133--156},
year = {1988},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {116},
number = {2},
doi = {10.24033/bsmf.2092},
mrnumber = {90b:53053},
zbl = {0681.53020},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2092/}
}
TY - JOUR AU - Derdziński, Andrzej TI - Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces JO - Bulletin de la Société Mathématique de France PY - 1988 SP - 133 EP - 156 VL - 116 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2092/ DO - 10.24033/bsmf.2092 LA - en ID - BSMF_1988__116_2_133_0 ER -
%0 Journal Article %A Derdziński, Andrzej %T Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces %J Bulletin de la Société Mathématique de France %D 1988 %P 133-156 %V 116 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2092/ %R 10.24033/bsmf.2092 %G en %F BSMF_1988__116_2_133_0
Derdziński, Andrzej. Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces. Bulletin de la Société Mathématique de France, Tome 116 (1988) no. 2, pp. 133-156. doi: 10.24033/bsmf.2092
[1] , and . - Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, t. 362, 1978, p. 425-461. | Zbl | MR
[2] , and . - Le Spectre d'une Variété Riemannienne. - Berlin-Heidelberg-New York, Springer-Verlag, (Lecture Notes in Math., 194), 1971. | Zbl | MR
[3] . - Nonlinearity and Functional Analysis. - New York-San Francisco-London, Academic Press, 1977. | Zbl | MR
[4] . - Einstein Manifolds, Berlin-Heidelberg, Springer-Verlag, (Ergebnisse der Mathematik und ihrer Grenzgebiete, 10), 1987. | Zbl | MR
[5] . - Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math., t. 63, 1981, p. 263-286. | Zbl | MR
[6] . - Metrics with harmonic curvature, Global Riemannian Geometry, [T. J. WILLMORE and N. HITCHIN, eds.], p. 18-26. - Chichester, Ellis Horwood Ltd., 1984. | Zbl | MR
[7] . - Extremal Kähler metrics, Seminar on Differential Geometry, [S. T. YAU, ed.], p. 259-290. - Princeton, N.J., Princeton University Press, 1982. | Zbl | MR
[8] . - Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z., t. 172, 1980, p. 273-280. | Zbl
[9] . - Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., t. 49, 1983, p. 405-433. | Zbl | Numdam
[10] and . - Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. (3), t. 47, 1983, p. 15-26. | Zbl | MR
[11] and . - Preprint, Philadelphia, Univ. of Pennsylvania, 1984.
[12] . - Invariants of curvature operators of four-dimensional Riemannian manifolds, Proc. 13th Biennial Seminar Canadian Math. Congress, vol. 2, p. 42-65, 1972. | Zbl | MR
[13] . - The conjectures on conformal transformations of Riemannian manifolds, Bull. Amer. Math. Soc., t. 77, 1971, p. 265-270. | Zbl | MR
[14] . - Nombres caractéristiques d'une surface kählérienne compacte, C. R. Acad. Sci. Paris Sér. A Math., t. 283, 1976, p. 1025-1028. | Zbl | MR
[15] , and . - Geometric bounds on the low eigenvalues of a compact surface, Proc. Sympos. Pure Math., vol. 36, p. 279-285, 1980. | Zbl | MR
[16] . - Ricci Calculus. - Berlin-Heidelberg, Springer-Verlag, 1954. | Zbl
[17] and . - The curvature of 4-dimensional Einstein spaces, Global Analysis, [Papers in Honor of K. KODAIRA ; D. C. SPENCER and S. IYANAGA, eds.], p. 355-365. - Princeton, N.J., Princeton University Press, 1969. | Zbl | MR
[18] . - Some remarks on the Gauss-Bonnet integral, J. Math. Mech., t. 18, 1969, p. 779-786. | Zbl | MR
[19] . - Topological properties of differentiable manifolds, Bull. Amer. Math. Soc., t. 43, 1937, p. 785-805. | Zbl | JFM
Cité par Sources :







