We construct an intrinsic regular surface in the first Heisenberg group equipped wiht its Carnot-Carathéodory metric which has euclidean Hausdorff dimension . Moreover we prove that each intrinsic regular surface in this setting is a -dimensional topological manifold admitting a -Hölder continuous parameterization.
Kirchheim, Bernd 1 ; Serra Cassano, Francesco 2
@article{ASNSP_2004_5_3_4_871_0,
author = {Kirchheim, Bernd and Serra Cassano, Francesco},
title = {Rectifiability and parameterization of intrinsic regular surfaces in the {Heisenberg} group},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {871--896},
year = {2004},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 3},
number = {4},
mrnumber = {2124590},
zbl = {1170.28300},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2004_5_3_4_871_0/}
}
TY - JOUR AU - Kirchheim, Bernd AU - Serra Cassano, Francesco TI - Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 871 EP - 896 VL - 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2004_5_3_4_871_0/ LA - en ID - ASNSP_2004_5_3_4_871_0 ER -
%0 Journal Article %A Kirchheim, Bernd %A Serra Cassano, Francesco %T Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 871-896 %V 3 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2004_5_3_4_871_0/ %G en %F ASNSP_2004_5_3_4_871_0
Kirchheim, Bernd; Serra Cassano, Francesco. Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 871-896. https://www.numdam.org/item/ASNSP_2004_5_3_4_871_0/
[1] - , Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527-555. | Zbl | MR
[2] - , Currents in metric spaces, Acta Math. 185 (2000), 1-80. | Zbl | MR
[3] - , Weak differentiability of function on stratified groups, Math. Z. 245 (2003), 123-153. | Zbl | MR
[4] , Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003), 63-84. | Zbl | MR
[5] - - , Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, Publ. Mat. 47 (2003), 237-259. | Zbl | MR
[6] - - , Lifts of Lipischitz maps and horizontal fractals in the Heisenberg group, Preprint (2003).
[7] , “The tangent space in subriemannian geometry", In: “Subriemannian Geometry", Progress in Mathematics 144, A. Bellaiche - J. Risler (eds.), Birkhauser Verlag, Basel, 1996. | Zbl | MR
[8] - - , Some results in surface measure in Calculus of Variations, Ann. Mat. Pura Appl. (4) 170 (1996), 329-357. | Zbl | MR
[9] - , Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), 37-44. | Zbl | MR
[10] - - , The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 12 (1994), 203-215. | Zbl | MR
[11] - , Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293-314. | Zbl | MR
[12] , Hausdorff lower -densities and rectifiability of sets in -space, Preprint.
[13] - - , Traces inequalities for Carnot-Carathèodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 195-252. | Zbl | MR | Numdam
[14] - , “Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure”, Oxford University Press, 1997. | Zbl | MR
[15] - , Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann. 315 (1999), 641-710. | Zbl | MR
[16] , Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni, Ann.Mat.Pura Appl. (4) 36 (1954), 191-213. | Zbl | MR
[17] , Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ricerche Mat. 4 (1955), 95-113. | Zbl | MR
[18] - - , “Frontiere orientate di misura minima e questioni collegate”, Scuola Normale Superiore, Pisa, 1972. | Zbl | MR
[19] , Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 285-292. | Zbl | MR
[20] , Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata, Manuscript, (1995).
[21] , Un progetto di teoria delle correnti, forme differenziali e varietà non orientate in spazi metrici, In: “Variational Methods, Non Linear Analysys and Differential Equations in Honour of J. P. Cecconi”, (Genova 1993), M. Chicco et al. (eds.), ECIG, Genova, 67-71.
[22] , “Geometric Measure Theory”, Springer, 1969. | Zbl | MR
[23] - - , Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571. | Zbl | MR
[24] - - , Meyers-Serrin Type Theorems and Relaxation of Variational Integrals Depending Vector Fields, Houston J. Math. 22 (1996), 859-889. | Zbl | MR
[25] - - , Sur les ensembles des périmètre fini dans le groupe de Heisenberg, C.R. Acad. Sci. Paris Ser. I Math. 329 (1999), 183-188. | Zbl | MR
[26] - - , Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479-531. | Zbl | MR
[27] - - , Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003) 909-944. | Zbl | MR
[28] - - , Rectifiability and perimeter in step 2 groups, Proceedings of Equadiff10, 2001, Math. Bohem. 127 (2002), 219-228. | Zbl | MR
[29] - - , On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), 421-466. | Zbl | MR
[30] - , Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144. | Zbl | MR
[31] , “Carnot-Carathéodory spaces seen from within", In: “Subriemannian Geometry", Progress in Mathematics 144, A. Bellaiche and J. Risler (eds.), Birkhauser Verlag, Basel, 1996. | Zbl | MR
[32] - , “Sobolev met Poincare”, Mem. AMS 145, 2000. | Zbl | MR
[33] - - - , Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87-139. | Zbl | MR
[34] , Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), 113-123. | Zbl | MR
[35] - , A counterexample to the metric differentiability, Proc. Edinburgh Math. Soc. 46 (2003), 221-227. | Zbl | MR
[36] - , Foundation for the Theory of Quasiconformal Mappings on the Heisenberg Group, Adv. Math. 111 (1995), 1-87. | Zbl
[37] , Rectifiability of measures with locally uniform cube density, Proc. London Math. Soc. (3) 86 (2003), 153-249. | Zbl | MR
[38] , Differentiability and Area formula on stratified Lie groups, Houston J. Math. 27 (2001), 297-323. | Zbl | MR
[39] , Characteristic points, rectifiability and perimeter measure on stratified groups, Preprint (2003). | MR
[40] - , Hausorff measures, Hölder continuous maps and self-similar fractals, Math. Proc. Cambridge Philos. Soc. 114 (1993), 37-42. | Zbl | MR
[41] - , On The Parametrization of Self-Similar And Other Fractal Sets, Trans. Amer. Math. Soc. 128 (2000), 2641-2648. | Zbl | MR
[42] , “Geometry of sets and measures in Euclidean spaces”, Cambridge U.P., 1995. | Zbl | MR
[43] , On Carnot-Carathèodory metrics, J. Differential Geom. 21 (1985), 35-45. | Zbl | MR
[44] - , Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339-376. | Zbl | MR
[45] - - , Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103-147. | Zbl | MR
[46] , Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1-60. | Zbl | MR
[47] , Une inégalité isopérimétrique sur le groupe de Heisenberg, C.R. Acad. Sci. Paris 295 I (1982), 127-130. | Zbl | MR
[48] , Geometrie du Group d'Heisenberg, These pour le titre de Docteur 3ème cycle, Universite Paris VII, (1982).
[49] , A notion of rectifiability modelled on Carnot groups, Indiana Univ. Math. J. 53 (2004), 49-81. | Zbl | MR
[50] - , On Besicovitch -problem, J. London Math. Soc. 45 (1992), 279-287. | Zbl
[51] , Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 198-223. | Zbl | MR
[52] , Chord- arc surfaces with small constant I, Adv. Math. 85 (1991), 198-223. | Zbl | MR
[53] , Chord- arc surfaces with small constant II, Adv. Math. 88 (1991), 170-189. | Zbl | MR
[54] , On the non existence of bilipschitz parameterization and geometric problems about weights, Rev. Mat. Iberoamericana 12 (1996), 337-410. | Zbl
[55] , Good metric spaces without good parameterization, Rev. Mat. Iberoamericana 12 (1996), 187-275. | Zbl | MR
[56] , “Lectures on Geometric Measure Theory”, Proc. Centre for Math. Anal., Australian Nat. Univ. 3, 1983. | Zbl | MR
[57] , “Harmonic Analysis”, Princeton University Press, 1993. | Zbl | MR
[58] , Self-similarity on nilpotent Lie groups, Contemp. Math. 140 (1992), 123-157. | Zbl | MR
[59] , Geometric conditions and existence of bi-lipschitz parameterizations, Duke Math. J. 77 (1995), 193-227. | Zbl | MR
[60] , Analysis on Lie Groups, J. Funct. Anal. 76 (1988), 346-410. | Zbl | MR
[61] - - , “Analysis and Geometry on Groups”, Cambridge University Press, Cambridge, 1992. | Zbl | MR
[62] , -differentiability on Carnot groups in different topologies and related topics, Proc. on Analysis and Geometry, 603-670, Sobolev Institute Press, Novosibirsk, 2000. | Zbl | MR






