A Banach-space version of the Calderón-Zygmund theorem is presented and applied to obtaining apriori estimates for solutions of second-order parabolic equations in -spaces.
@article{ASNSP_2002_5_1_4_799_0,
author = {Krylov, Nicolai V.},
title = {The {Calder\'on-Zygmund} theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {799--820},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {4},
mrnumber = {1991003},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/}
}
TY - JOUR
AU - Krylov, Nicolai V.
TI - The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
SP - 799
EP - 820
VL - 1
IS - 4
PB - Scuola normale superiore
UR - https://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/
LA - en
ID - ASNSP_2002_5_1_4_799_0
ER -
%0 Journal Article
%A Krylov, Nicolai V.
%T The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2002
%P 799-820
%V 1
%N 4
%I Scuola normale superiore
%U https://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/
%G en
%F ASNSP_2002_5_1_4_799_0
Krylov, Nicolai V. The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 799-820. https://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/
[1] , Interior Schauder estimates for parabolic differential- (or ) equations via the maximum principle, Israel J. Math. 7 (1969), 254-262. | Zbl | MR
[2] , A class of singular integrals, Amer. J. Math. 86 (1964), 441-462. | Zbl | MR
[3] , Parabolic interior Schauder estimates by the maximum principle, Arch. Rational Mech. Anal. 75 (1980), 51-58. | Zbl | MR
[4] , A parabolic Littlewood-Paley inequality with applications to parabolic equations, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 4 (1994), 355-364. | Zbl | MR
[5] , “Lectures on elliptic and parabolic equations in Hölder spaces”, Amer. Math. Soc., Providence, RI, 1996. | Zbl | MR
[6] , The heat equation in -spaces with weights, SIAM J. Math. Anal. 32 (2001), 117-1141. | Zbl | MR
[7] , On the Calderón-Zygmund theorem with applications to parabolic equations, Algebra i Analiz 13 (2001), 1-25, in Russian; English translation in St Petersburg Math. J. 13 (2002), 509-526. | Zbl | MR
[8] , Parabolic equations in -spaces with mixed norms, to appear in Algebra i Analiz. | Zbl
[9] , Optimal Schauder estimates for parabolic problems with data measurable with respect to time, SIAM J. Math. Anal. 32 (2000), 588-615. | Zbl | MR
[10] , An interpolation method to characterize domains of generators of semigroups, Semigroup Forum 53 (1996), 321-329. | Zbl | MR | EuDML
[11] , “Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals”, Princeton Univ. Press, Princeton, NJ, 1993. | Zbl | MR






