We show that the domain of the Ornstein-Uhlenbeck operator on equals the weighted Sobolev space , where is the corresponding invariant measure. Our approach relies on the operator sum method, namely the commutative and the non commutative Dore-Venni theorems.
@article{ASNSP_2002_5_1_2_471_0,
author = {Metafune, Giorgio and Pr\"uss, Jan and Rhandi, Abdelaziz and Schnaubelt, Roland},
title = {The domain of the {Ornstein-Uhlenbeck} operator on an $L^p$-space with invariant measure},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {471--485},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {2},
mrnumber = {1991148},
zbl = {1170.35375},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/}
}
TY - JOUR AU - Metafune, Giorgio AU - Prüss, Jan AU - Rhandi, Abdelaziz AU - Schnaubelt, Roland TI - The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 471 EP - 485 VL - 1 IS - 2 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/ LA - en ID - ASNSP_2002_5_1_2_471_0 ER -
%0 Journal Article %A Metafune, Giorgio %A Prüss, Jan %A Rhandi, Abdelaziz %A Schnaubelt, Roland %T The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 471-485 %V 1 %N 2 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/ %G en %F ASNSP_2002_5_1_2_471_0
Metafune, Giorgio; Prüss, Jan; Rhandi, Abdelaziz; Schnaubelt, Roland. The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 471-485. https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/
[1] - , Generation of analytic semigroups in the topology by elliptic operators in , Israel J. Math. 61 (1988), 235-255. | Zbl | MR
[2] - , Generalized symmetric Ornstein-Uhlenbeck operators in : Littlewood-Paley-Stein inequalities and domains of generators, to appear in J. Funct. Anal. | MR
[3] - , Symmetric Ornstein-Uhlenbeck generators: Characterizations and identification of domains, preprint.
[4] - , Completely positive measures and Feller semigroups, Math. Ann. 287 (1990), 73-105. | Zbl | MR
[5] - , Transference Methods in Analysis, Amer. Math. Society, 1977. | Zbl | MR
[6] , Characterization of the domain of an elliptic operator of infinitely many variables in spaces, Rend. Mat. Acc. Lincei 8 (1997), 101-105. | Zbl | MR
[7] , Perturbation of Ornstein-Uhlenbeck semigroups, Rend. Istit. Mat. Univ. Trieste 28 (1997), 101-126. | Zbl | MR
[8] - , On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. | Zbl | MR
[9] - , On perturbations of symmetric Gaussian diffusions, Stochastic Anal. Appl. 17 (1999), 369-382. | Zbl | MR
[10] - , Maximal regularity for elliptic equations with unbounded coefficients, to appear in Nonlinear Analysis TMA. | Zbl
[11] - , “Stochastic Equations in Infinite Dimensions”, Cambridge University Press, 1992. | Zbl | MR
[12] - , Regular densities of invariant measures in Hilbert spaces, J. Funct. Anal. 130 (1995), 427-449. | Zbl | MR
[13] - , On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. | Zbl | MR
[14] , On the Ornstein-Uhlenbeck operator in spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169. | Zbl | MR
[15] , -spectrum of Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Sup. Pisa 30 (2001), 97-124. | Zbl | MR | Numdam
[16] - - , Spectrum of Ornstein-Uhlenbeck operators in spaces with respect to invariant measures, preprint. | Zbl
[17] - , A theorem of the Dore-Venni type for noncommuting operators, Trans. Amer. Math. Soc. 349 (1997), 4787-4814. | Zbl | MR
[18] - , On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. | Zbl | MR
[19] - , Imaginary powers of elliptic second order differential operators in -space, Hiroshima Math. J. 23 (1993), 161-192. | Zbl | MR
[20] , Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ. 32 (1992), 731-748. | Zbl | MR






