@article{ASNSP_1999_4_28_4_651_0,
author = {Giacomoni, Jacques and Jeanjean, Louis},
title = {A variational approach to bifurcation into spectral gaps},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {651--674},
year = {1999},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 28},
number = {4},
mrnumber = {1760535},
zbl = {0961.35032},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/}
}
TY - JOUR AU - Giacomoni, Jacques AU - Jeanjean, Louis TI - A variational approach to bifurcation into spectral gaps JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1999 SP - 651 EP - 674 VL - 28 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/ LA - en ID - ASNSP_1999_4_28_4_651_0 ER -
%0 Journal Article %A Giacomoni, Jacques %A Jeanjean, Louis %T A variational approach to bifurcation into spectral gaps %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1999 %P 651-674 %V 28 %N 4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/ %G en %F ASNSP_1999_4_28_4_651_0
Giacomoni, Jacques; Jeanjean, Louis. A variational approach to bifurcation into spectral gaps. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 28 (1999) no. 4, pp. 651-674. https://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/
[1] - , Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), 89-115. | Zbl | MR
[2] - , Critical point theorems for indefinite functions, Invent. Math. 52 (1979), 241-273. | Zbl | MR
[3] - - , Free vibrations for a nonlinear wave equation and a theorem of P. H. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), 667-689. | Zbl | MR
[4] - , Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939-963. | Zbl | MR
[5] , "Un problème variationnel fortement indéfini sans compacité", Ph. D. Thesis, EPFL, Lausanne, 1992.
[6] - , Bifurcation from the essential spectrum towards regular values, J. Reine Angew. Math. 445 (1993), 1-29. | Zbl | MR
[7] - , Minimax characterisation of solutions for a semi-linear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 377-404. | Zbl | MR | Numdam
[8] - - , Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), 179-186. | Zbl | MR
[9] - - , A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 133-160. | Zbl | MR
[10] - , Stationnary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys. 171 (1995), 323-350. | Zbl | MR
[11] , Bifurcation from the essential spectrum for nonlinear pertubations of Hill's equation, In "Differential Equations-Stability and Control " S. ELAYDI (ed.), Marcel Dekker, New York, 1990, pp. 219-226. | Zbl
[12] , Lacunary bifurcation for operator equations and nonlinear boundary value problems on RN, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 237-270. | Zbl | MR
[13] - , Solvability of nonlinear equations in spectral gaps of the linearisation, Nonlinear Anal. 19 (1992), 145-165. | Zbl | MR
[14] - - , Existence and bifurcation of solutions for nonlinear pertubations of the periodic Schrödinger equation, J. Differential Equations 100 (1992), 341-354. | Zbl | MR
[15] - , First order elliptic system and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 483-503. | Zbl | MR
[16] - , Bifurcation into gaps in the essential spectrum, J. Reine Angew. Math. 409 (1990), 1-34. | Zbl | MR
[17] , Bifurcation of homoclinic solutions for Hamiltonian systems, in preparation.
[18] , Solution in spectral gaps for a nonlinear equation of Schrödinger type, J. Differential Equations 112 (1994), 53-80. | Zbl | MR
[19] , "Approche minimax des solutions d'une équation semi-linéaire elliptique en l'absence de compacité", Ph. D. Thesis, EPFL, Lausanne, 1992.
[20] , On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN, Proc. Roy. Soc. Edinburgh, to appear. | Zbl
[21] , Local conditions insuring bifurcation from the continuous spectrum, Math. Z., to appear. | Zbl | MR
[22] - , Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 23-28. | Zbl | MR
[23] - , Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), 441-472. | Zbl | MR
[24] , "Variational Methods", Springer, Second Edition, 1996. | Zbl | MR
[25] , "Bifurcation into spectral gaps", Société Mathématique de Belgique, 1995. | Zbl | MR
[26] , Bifurcation into spectral gaps for a noncompact semilinear Schrödinger equation with nonconvex potential, Preprint.
[27] - , Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations 21 (1996), 1431-1449. | Zbl | MR
[28] , "Minimax Theorems", Birkhaüser, Boston, 1996. | Zbl | MR






