@article{ASNSP_1998_4_26_1_97_0,
author = {Bellettini, Giovanni and Novaga, Matteo},
title = {Comparison results between minimal barriers and viscosity solutions for geometric evolutions},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {97--131},
year = {1998},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 26},
number = {1},
mrnumber = {1632984},
zbl = {0904.35041},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1998_4_26_1_97_0/}
}
TY - JOUR AU - Bellettini, Giovanni AU - Novaga, Matteo TI - Comparison results between minimal barriers and viscosity solutions for geometric evolutions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 97 EP - 131 VL - 26 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1998_4_26_1_97_0/ LA - en ID - ASNSP_1998_4_26_1_97_0 ER -
%0 Journal Article %A Bellettini, Giovanni %A Novaga, Matteo %T Comparison results between minimal barriers and viscosity solutions for geometric evolutions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 97-131 %V 26 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1998_4_26_1_97_0/ %G en %F ASNSP_1998_4_26_1_97_0
Bellettini, Giovanni; Novaga, Matteo. Comparison results between minimal barriers and viscosity solutions for geometric evolutions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 26 (1998) no. 1, pp. 97-131. https://www.numdam.org/item/ASNSP_1998_4_26_1_97_0/
[1] - , A level set approach to the evolution of surfaces of any codimension, J. Differential Geom. 43 (1996), 693-737. | Zbl | MR
[2] , Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), 151-171. | Zbl | MR
[3] , Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom. 34 (1994), 407-431. | Zbl | MR
[4] - - , Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), 439-469. | Zbl | MR
[5] , Alcuni risultati sulle minime barriere per movimenti geometrici di insiemi, Boll. Un. Mat. Ital. 11 (1997), 485-512. | Zbl
[6] - , Minimal barriers for geometric evolutions, J. Differential Equations 139 (1997), 76-103. | Zbl | MR
[7] - , Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 19 (1995), 43-67. | Zbl | MR
[8] - , Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (1996), 537-566. | Zbl | MR
[9] - - , Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom. 33 (1991), 749-786. | Zbl | MR
[10] - - , User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. | Zbl | MR
[11] - , Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 227 (1983), 1-42. | Zbl | MR
[12] , Barriers, boundaries, motion of manifolds, Conference held at Dipartimento di Matematica of Pavia, March 18, 1994.
[13] - , Motion of level sets by mean curvature I, J. Differential Geom. 33 (1991), 635-681. | Zbl | MR
[14] - , Motion of level sets by mean curvature II, Trans. Amer. Math. Soc. 330 (1992), 321-332. | Zbl | MR
[15] - , Geometric evolution of phase-boundaries, On the evolution of phase boundaries (M.E. Gurtin and G.B. MacFadden, eds.) vol. IMAVMA43, Springer-Verlag, New York, 1992, 51-65. | Zbl | MR
[16] - - - , Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 (1991), 443-470. | Zbl | MR
[17] , Generalized motion of hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations 7 (1994), 323-343. | Zbl | MR
[18] , Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237-266. | Zbl | MR
[19] - , The inverse mean curvature flow and the Riemannian Penrose inequality, in preparation.
[20] , The level-set flow on a manifold, Proc. Symp. Pure Math. 54 (1993), 193-204. | Zbl | MR
[21] , Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J. 41 (1992), 671-705. | Zbl | MR
[22] - , Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227-250. | Zbl | MR
[23] , "Generalized solutions of Hamilton-Jacobi equations", Pitman Research Notes in Mathematics, Boston, 1982. | Zbl | MR
[24] , "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Boston, 1995. | Zbl | MR
[25] , Motion of a set by the curvature of its boundary, J. Differential Equations 101 (1993), 313-372. | Zbl | MR






