@article{ASNSP_1990_4_17_4_583_0,
author = {Choe, Jaigyoung},
title = {The isoperimetric inequality for a minimal surface with radially connected boundary},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {583--593},
year = {1990},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 17},
number = {4},
mrnumber = {1093710},
zbl = {0745.53004},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/}
}
TY - JOUR AU - Choe, Jaigyoung TI - The isoperimetric inequality for a minimal surface with radially connected boundary JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1990 SP - 583 EP - 593 VL - 17 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/ LA - en ID - ASNSP_1990_4_17_4_583_0 ER -
%0 Journal Article %A Choe, Jaigyoung %T The isoperimetric inequality for a minimal surface with radially connected boundary %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1990 %P 583-593 %V 17 %N 4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/ %G en %F ASNSP_1990_4_17_4_583_0
Choe, Jaigyoung. The isoperimetric inequality for a minimal surface with radially connected boundary. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 17 (1990) no. 4, pp. 583-593. https://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/
[A] , Jr., Optimal isoperimetric inequalities, Indiana Univ. Math. J., 35 (1986), 451-547. | Zbl
[C] , Zur Theorie der Minimalflächen, Math. Z., 9 (1921), 154-160. | JFM
[F] , The isoperimetric inequality for doubly connected minimal surfaces in RN, J. Analyse Math., 32 (1977), 249-278. | Zbl
[G] , Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147. | Zbl
[H] , On Fenchel's theorem, Amer. Math. Monthly, 78 (1971), 380-381. | Zbl
[LSY] - - , On the isoperimetric inequality for minimal surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 237-244. | Zbl | Numdam
[OS] - , Doubly-connected minimal surfaces, Arch. Rational Mech. Anal., 58 (1975), 285-307. | Zbl
[S] , A bridge principle for minimal and constant mean curvature submanifolds of RN, Invent. Math., 90 (1987), 505-549. | Zbl





