@article{ASNSP_1985_4_12_4_641_0,
author = {Lasiecka, I. and Triggiani, R.},
title = {Finite rank, relatively bounded perturbations of semigroups generators},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {641--668},
year = {1985},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 12},
number = {4},
mrnumber = {848843},
zbl = {0602.47029},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1985_4_12_4_641_0/}
}
TY - JOUR AU - Lasiecka, I. AU - Triggiani, R. TI - Finite rank, relatively bounded perturbations of semigroups generators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1985 SP - 641 EP - 668 VL - 12 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1985_4_12_4_641_0/ LA - en ID - ASNSP_1985_4_12_4_641_0 ER -
%0 Journal Article %A Lasiecka, I. %A Triggiani, R. %T Finite rank, relatively bounded perturbations of semigroups generators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1985 %P 641-668 %V 12 %N 4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1985_4_12_4_641_0/ %G en %F ASNSP_1985_4_12_4_641_0
Lasiecka, I.; Triggiani, R. Finite rank, relatively bounded perturbations of semigroups generators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 12 (1985) no. 4, pp. 641-668. https://www.numdam.org/item/ASNSP_1985_4_12_4_641_0/
[B-N1] - , Fourier Analysis and Approximations, Vol. 1, Academic Press, New York, 1971. | Zbl | MR
[D1] , Introduction to the theory and Application of the Laplace transformation, Springer-verlag, New York, Heidelberg, Berlin, 1970. | Zbl | MR
[D-S1] - , On relatively bounded perturbations of linear C0-semigroups, preprint May 1983, Institute für Mathematik, Technische Universität Graz, Austria.
[F1] , The Cauchy Problem, Encyclopedia Math. Appl., Addison-Wesley, 1983. | MR
[H-P1] and , Functional Analysis and semigroups, Amer. Math. Soc., , 1957. | Zbl | MR
[K1] , Perturbation Theory of Linear Operators, Springer-Verlag, 1966. | Zbl | MR
[K2] , Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., vol. XXIII (1970), pp. 277-298. | Zbl | MR
[M1] , Partial differential equations, MIR Publishers, Moscow (English translation), 1978. | Zbl | MR
[P1] , Semigroups of Operators and Applications to Partial Differential Equations, Lect. Notes # 10, Math. Dept. Univ. of Maryland, College Park (1974). | MR
[L-T1] - , A cosine operator approach to modelling L2(O, T; L2(Γ))-input hyperbolic equations, Appl. Math. Optim., 7 (1981), pp. 35-93. | Zbl
[L-T2] - , Hyperbolic equations with Dirichlet boundary feedback via position vector: regularity and almost periodic stabilization, I, Appl. Math. Optim., 8 (1981), pp. 1-37. | Zbl | MR
[L-T3] - , Dirichlet boundary stabilization of the wave equation with damping feedback of finite range, J. Math. Anal. Appl., 97 (1983), pp. 112-130. | MR
[L-T4] - , Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations, J. Differential Equations, 47 (1983), pp. 246-272. | MR
[L-T5] - , Nondissipative boundary stabilization of the wave equation via boundary observations, J. Math. Pures Appl., 63 (1984), pp. 59-80. | MR
[L-T6] - , Regularity of hyperbolic equations under L2(O, T; L2(Γ))-Dirichtet boundary terms, Appl. Math. Optim., 40 (1983), pp. 275-286. | Zbl
[L-T7] - , Hyperbolic equations with nonhomogeneous Neumann boundary terms. - I: Regularity. To appear.
[L-T8] , Dirichlet boundary control problem for parabolic equations with quadratic cost: analyticity and Riccati's feedback synthesis, SIAM J. Control Optim., 24 (1983), pp. 41-67. | Zbl | MR
[L-T9[ - , Finite rank, relatively bounded perturbations of semi-groups generators. Part II : spectrum and Riesz basis assignment with applications to feedback systems, Ann. Mat. Pura Appl. to appear. | Zbl
[R1] , L2 is a continuable initial condition for Kreiss mixed problems, Comm. Pure Appl. Math., 25 (1972), pp. 265-285. | Zbl | MR
[T1] , Well posedness and regularity of boundary feedback parabolic systems, J. Differential Equations, 36 (1980), pp. 347-362. | Zbl | MR
[T2[ , Aε-bounded, finite rank perturbations of a s.c. group generators : counterexamples to generation and to another condition for well-posedness. Lecture Notes in Mathematics 1076, Infinite dimensional systems, Proceedings, Retzholf (1983), Springer-Verlag (1984), pp. 227-253. | Zbl
[Y1] , Functional Analysis, Springer-Verlag, 4th Edition, 1976.






