[Flot de Ricci couplé avec le flot harmonique]
We investigate a coupled system of the Ricci flow on a closed manifold with the harmonic map flow of a map from to some closed target manifold ,
Nous étudions un système d’équations consistant en un couplage entre le flot de Ricci et le flot harmonique d’une fonction allant de dans une variété cible ,
Keywords: Ricci flow, harmonic map flow
Mots-clés : flot de Ricci, flot harmonique
@article{ASENS_2012_4_45_1_101_0,
author = {M\"uller, Reto},
title = {Ricci flow coupled with harmonic map flow},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {101--142},
year = {2012},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 45},
number = {1},
doi = {10.24033/asens.2161},
mrnumber = {2961788},
zbl = {1247.53082},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2161/}
}
TY - JOUR AU - Müller, Reto TI - Ricci flow coupled with harmonic map flow JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 101 EP - 142 VL - 45 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2161/ DO - 10.24033/asens.2161 LA - en ID - ASENS_2012_4_45_1_101_0 ER -
%0 Journal Article %A Müller, Reto %T Ricci flow coupled with harmonic map flow %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 101-142 %V 45 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2161/ %R 10.24033/asens.2161 %G en %F ASENS_2012_4_45_1_101_0
Müller, Reto. Ricci flow coupled with harmonic map flow. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 1, pp. 101-142. doi: 10.24033/asens.2161
[1] , Real analyticity of solutions of Hamilton's equation, Math. Z. 195 (1987), 93-97. | Zbl | MR
[2] , Sur la généralisation du problème de Dirichlet II, Math. Ann. 69 (1910), 82-136. | MR | JFM
[3] & , A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), 165-492. | Zbl | MR
[4] , , , , , , , , & , The Ricci flow: Techniques and applications: Part I: Geometric aspects, Mathematical Surveys and Monographs 135, Amer. Math. Soc., 2007. | Zbl | MR
[5] , , , , , , , , & , The Ricci flow: Techniques and applications: Part II: Analytic aspects, Mathematical Surveys and Monographs 144, Amer. Math. Soc., 2008. | Zbl | MR
[6] & , The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc., 2004. | Zbl | MR
[7] , & , Hamilton's Ricci flow, Graduate Studies in Math. 77, Amer. Math. Soc., 2006. | Zbl | MR
[8] & , Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005), 561-569. | Zbl | MR
[9] & , Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), 2537-2586. | Zbl | MR
[10] , Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), 157-162. | Zbl | MR
[11] & , A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. | Zbl | MR
[12] & , Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. | Zbl | MR
[13] & , Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. | Zbl | MR
[14] , & , Stability of the Ricci flow at Ricci-flat metrics, Comm. Anal. Geom. 10 (2002), 741-777. | Zbl | MR
[15] , Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. | Zbl | MR
[16] , The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995. | Zbl | MR
[17] & , On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449-476. | Zbl | MR
[18] , Riemannian geometry and geometric analysis, third éd., Universitext, Springer, 2002. | Zbl | MR
[19] & , Notes on Perelman's papers, Geom. Topol. 12 (2008), 2587-2855. | Zbl | MR
[20] , Biharmonic maps, Thèse, Albert-Ludwig-Universität Freiburg im Breisgau, 2005. | Zbl
[21] , Propagateurs et commutateurs en relativité générale, Publ. Math. I.H.É.S. 10 (1961). | Zbl | Numdam
[22] , Evolution of an extended Ricci flow system, Thèse, Albert-Einstein-Institut, Berlin, 2005. | Zbl
[23] , On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007), 627-666. | Zbl | MR
[24] & , A note on quasilinear parabolic equations on manifolds, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. | Zbl | MR | Numdam
[25] & , Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc., 2007. | Zbl | MR
[26] & , Completion of the proof of the geometrization conjecture, preprint arXiv:0809.4040.
[27] , Differential Harnack inequalities and the Ricci flow, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006. | Zbl | MR
[28] , The Ricci flow coupled with harmonic map heat flow, Thèse, ETH Zürich, 2009.
[29] , Monotone volume formulas for geometric flows, J. reine angew. Math. 643 (2010), 39-57. | Zbl | MR
[30] , The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. | Zbl | MR
[31] , The entropy formula for the Ricci flow and its geometric applications, preprint arXiv:math/0211159. | Zbl
[32] , Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint arXiv:math/0307245. | Zbl
[33] , Ricci flow with surgery on three-manifolds, preprint arXiv:math/0303109. | Zbl
[34] , Cinquième complément à l'Analysis Situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110. | JFM
[35] & , Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. | Zbl | MR
[36] , Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981), 110-120. | Zbl | MR
[37] , & , Stability of Euclidean space under Ricci flow, Comm. Anal. Geom. 16 (2008), 127-158. | Zbl | MR
[38] , Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), 223-301. | Zbl | MR
[39] , Deformation of Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom. 10 (2002), 1033-1074. | Zbl
[40] , Geometric evolution problems, in Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser. 2, Amer. Math. Soc., 1996, 257-339. | Zbl
[41] , Perelman's proof of the Poincaré conjecture: a nonlinear PDE perspective, preprint arXiv:math/0610903.
[42] , Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381. | Zbl
[43] , Lectures on the Ricci flow, London Math. Soc. Lecture Note Series 325, Cambridge Univ. Press, 2006. | Zbl
[44] , Results on coupled Ricci and harmonic map flows, preprint arXiv:1012.0291.
Cité par Sources :







